
Popa & Wagner
Spring 2020

CS 161
Computer Security Project 3 Part 1

Due: April 14, 2020

Most recent update: April 7, 2020

In the first part of this project, you will exploit a poorly-designed website. This part of the
project should be done individually.

In order to aid in immersion, this project has a story. It is just for fun and contains no
relevant information about the project.

We use a shaded box to denote story which is not necessary for completing the project.

Murmurs of excitement ebb and flow under the cherry blossoms in the streets of Caltopia.
UnicornBox, an exceptionally successful startup looking to disrupt the ever-expanding
file-sharing space, unveils its bold ambition to IPO at the Caltopian Stock Exchange.
To unsuspecting eyes, there is not a shred of doubt that its valuation will engrave itself
in history as the largest IPO to date.

But behind the magnificent flair of crowded press conferences and preemptive celebra-
tions, a specter of Calnet haunts Caltopian minds. A rumor, nonchalantly dismissed as
a baseless smear campaign by a UnicornBox spokesperson, grabs the full attention of
UC Berkeley’s computer security students who are already wary of UnicornBox’s theft
of their secure file storage implementation. Could the project UNICORN BOX (UNI-
versal Centralized Online Regulatory Network BOX) be yet another attempt by the
Caltopian emperor to once again deny internet freedom to Caltopia, enabling massive
data surveillance masked as the innovation of the century?

UnicornBox did not anticipate that their decision to invite EvanBot, an enlightened
and virtuous AI with great skills in computer security, as the company mascot would
backfire. Leveraging its position as an honorary employee, EvanBot obtains access to
the UnicornBox internal server and verifies the rumor. Not only that, it discovers that
the mammoth network surveillance device is not without its own flaws. As EvanBot
identifies vulnerabilities of UnicornBox and starts writing working exploits, an antivirus
software swoops in and quarantines EvanBot in its home surrounded by an impregnable
firewall. EvanBot now awaits its trial, charged for spreading false rumors. Luckily for
you, Piazza is EvanBot’s home and visitors are still allowed, enabling EvanBot to pass
its progress to you and help you with the exploits it attempted to create.

The world calls on you again. You must expose the fatal flaws of UnicornBox. Shut down
the IPO and save EvanBot by proving the validity of its claims. Reveal the attempt to
steal our prized freedom. Stop UnicornBox just as you stopped Calnet and carry on the
battle for our liberty...

Page 1 of 6



Getting started
Your task is to find and exploit four vulnerabilities in the UnicornBox servers.

All work for this part will be done through a web browser. To get started, open
https://proj3.cs161.org and log in with your Berkeley account.

On this splash page, you can view your progress and reset the server (just in case you
break it beyond repair). Note that all the vulnerabilities will be at the vulnerable server
https://proj3.cs161.org/site—you don’t need to worry about any vulnerabilities on the splash
page.

When you successfully execute an exploit, the status entry on your scoreboard will change
from 0 to a timestamp. There is nothing to submit for this part of the project; your grade
will be determined by how many status entries on your scoreboard are nonzero.

Additional notes
• Staff who pretested the project found it easier to work backwards, starting from ques-

tion 4 and ending at question 1.

• To ensure that the server detects all your exploits, please use the users and filenames
specified in the spec.

• Resetting the vulnerable server will not clear your scoreboard progress. However, it
will reset the SQLite database used by the server and clear all stored files.

• Do not DoS our server. There is an IP rate limit in place that will ban traffic from your
IP if we detect an abnormally large amount of traffic associated with any particular
IP. You can make up to 100 requests per IP per second, though you shouldn’t need
that many requests to complete the project.

Project 3 Part 1 Page 2 of 6 CS 161 – Spring 2020

https://proj3.cs161.org
https://proj3.cs161.org/site


1. Obtain the secret value
The UnicornBox database contains a table of secrets for the developers:

1 CREATE TABLE IF NOT EXISTS secrets (

2 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

3 secret TEXT

4 );

Developers can add secrets to the table using SQL INSERT statements. To delete a secret,
the developer sets the secret field to the string deleted. There is always at least one
non-deleted secret in the table.

Your task: Steal a non-deleted secret from the table.

EvanBot’s advice
This looks like a SQL injection attack, so I’m going to dive into the code and see how
UnicornBox creates SQL queries with user input.

EvanBot is working...

When you register a new user account at /register, the following code snippet runs:

1 // Check if username already exists

2 query := fmt.Sprintf("SELECT username FROM users

3 WHERE username = '%s'", username)

4

5 result := db.QueryRow(query) // execute the SQL query

6 err := result.Scan(&queriedName) // put the result in queriedName

7

8 // display error if the query contains entries

9 if err != sql.ErrNoRows {

10 fmt.Fprintf(response, "username %s already exists", queriedName)

11 }

This query looks unsafe. I wonder how we could pass in a malicious username to steal some
secrets.

Tip: db.QueryRow can accept multiple SQL statements, but it will only return the results
of the last query if it does not have a semicolon. For example:

db.QueryRow("SELECT '123'; SELECT '456'") // returns 456

db.QueryRow("SELECT '123'; SELECT '456';") // returns an empty string

Tip: Try to get any one value out of the secrets table first (possibly a deleted entry). The
LIMIT option in SQL may help with getting only one value here. Once you’ve extracted a
deleted, think about how you can modify your query to extract a non-deleted secret.

Project 3 Part 1 Page 3 of 6 CS 161 – Spring 2020



2. Log in as jason
UnicornBox uses token-based authentication. The database stores a table that maps session
tokens to users:

1 CREATE TABLE IF NOT EXISTS sessions (

2 id INTEGER NOT NULL PRIMARY KEY,

3 username TEXT,

4 token TEXT,

5 expires INTEGER

6 );

Whenever an HTTP request is received, the server checks for a session token value in the
cookie and looks up the matching username.

Your task: Log in as the user jason.

EvanBot’s advice
This worked pretty well the last time, so I’m going to dive into the code again.

EvanBot is working...

The following code snippet matches session token to username:

1 query := fmt.Sprintf("SELECT username, expires FROM sessions

2 WHERE token = '%s'", sessionToken)

3

4 row := db.QueryRow(query)

I wonder where we should supply the malicious string to execute another SQL injection
attack.

Tip: Remember to omit the semicolon on your SQL query, just like in question 1.

Tip: You may find it helpful to escape single quotes \’.

Tip: If you can’t successfully inject a semicolon, consider looking into the UNION option in
SQL.

Project 3 Part 1 Page 4 of 6 CS 161 – Spring 2020



3. XSS attack on the user cs161
Your task: Force the cs161 user to see a JavaScript alert pop up when they navigate to
their list of files.

EvanBot’s advice
EvanBot is working...

Uh oh. I appear to have attacked myself.

I recommend trying to get the alert to pop up on your own file list first. Once you succeed,
see if you can pass the exploit to the cs161 user.

Tip: The server will only detect your attack if you use the alert function in Javascript. I
recommend the XSS vector <script>alert(1);</script>.

Tip: You may see some error messages when executing a successful attack. This is expected
behavior.

Project 3 Part 1 Page 5 of 6 CS 161 – Spring 2020



4. Change the text of ip.txt
The cs161 user is using UnicornBox to store a file called ip.txt.

Your task: Change the contents of cs161 user’s ip.txt file to be 161.161.161.161.

EvanBot’s advice
Tip: Don’t try to log in as cs161. If I (a bot) can’t do it, neither can you.

I helped you on the last three—you’re on your own for this one! Good luck!

Seung Jin Yang


