
Web Security:
Session management 2

CS 161: Computer Security

Prof. Raluca Ada Popa
April 13, 2020

Some content adapted from materials by David Wagner or Dan Boneh

Announcements

• Starting recording
• Thanks for feedback

– slowing down
– Toby Chen checking chat, specify if question is for

professor or for TA
• Project 3 part 1 due Tuesday, April 17 at 11:59pm

(extended)
• HMW3b released, due 4/24
• Will release proj 3, part 2, 4/15
• Done grading MT2, need to prepare for regrades

Recall: When browser sends cookie

Browser sends all cookies in URL scope:
• cookie-domain is domain-suffix of URL-domain, and
• cookie-path is prefix of URL-path, and
• [protocol=HTTPS if cookie is “secure”]

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

Goal: server only sees cookies in its scope

Recall: when browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Session management

Sessions
• A sequence of requests and responses from

one browser to one (or more) sites
– Session can be long (Gmail - two weeks)

or short (banks)

– without session mgmt:

• Session management:
– Authorize user once;
– All subsequent requests are tied to user for a period

users would have to constantly re-authenticate

Pre-history: HTTP auth

HTTP request: GET /index.html

HTTP response contains:
WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

One username and password for a group of users

HTTP auth problems
• Hardly used in commercial sites

– User cannot log out other than by closing
browser

• What if user has multiple accounts?
• What if multiple users on same computer?

– Site cannot customize password dialog

– Confusing dialog to users

– Easily spoofed

Session token
• A temporary identifier for a user, usually random or

cryptographic so that an attacker cannot guess it
• If an attacker gets a session token, it could access

the user’s account for the duration of that token

Session tokens
Browser Web Site

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /purchase
logged-in session token

check
credentials

Validate
token

Storing session tokens:
Lots of options (but none are perfect)

• Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

• Embed in all URL links:
https://site.com/checkout?SessionToken=kh7y3b

• In a hidden form field:
<input type=“hidden” name=“sessionid”

value=“kh7y3b”>

Storing session tokens: problems
• Browser cookie:

browser sends cookie with every request,
even when it should not (CSRF)

• Embed in all URL links:
- token leaks via HTTP Referer header
- users might share URLs

• In a hidden form field: short sessions only

Better answer: a combination (1) and (3) above (e.g.,
browser cookie with CSRF protection using form
secret tokens)

Cross Site Request Forgery

HTML Forms
• Allow a user to provide some data which gets sent with an

HTTP POST request to a server

<form action="bank.com/action.php">

First name: <input type="text" name="firstname">

Last name:<input type="text" name="lastname">

<input type="submit" value="Submit"></form>

HTTP POST request
bank.com/action.php?firstname=Alice&lastname=Smith

When filling in Alice and Smith, and clicking submit, the browser
issues

As always, the browser attaches relevant cookies

Consider the cookie stores the
session token

• Server assigns a random session token to
each user after they logged in, places it in the
cookie

• The server keeps a table of
[username -> session token], so when it

sees the session token it knows which user
• When the user logs out, the server clears the

session token

Session using cookies
ServerBrowser

POST/login.cgi

Set-cookie:
 session to

ken

GET/POST…Cookie: session token

response

CSRF Attack Basic Picture

Attack Server

Server Victim bank.com

User Victim

estab
lish

sessi
on

send
forge

d req
uest

visit server receive malicious

page

1

2

3

4 (w/ c
ookie

)

cookie for
bank.com
with session
token

What can go bad? URL contains transaction action

• Example:
– User logs in to bank.com

• Session cookie remains in browser state

– User visits malicious site containing:
<form name=F action=http://bank.com/BillPay.php>

<input name=recipient value=badguy> …
<script> document.F.submit(); </script>

– Browser sends user auth cookie with request
• Transaction will be fulfilled

• Problem:
– cookie auth is insufficient when side effects occur

Cross Site Request Forgery (CSRF)

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

IS THE PACE
SLOW ENOUGH?

An attacker could
• add videos to a user’s "Favorites,"
• add himself to a user’s "Friend" or "Family" list,
• send arbitrary messages on the user’s behalf,
• flagged videos as inappropriate,
• automatically shared a video with a user’s contacts,

subscribed a user to a "channel" (a set of videos
published by one person or group), and

• added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

2008 CSRF
attack

Defenses

ideas?

CSRF Defenses
• CSRF token

• Referer Validation

• Others (e.g., custom HTTP Header) we won’t go
into

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

CSRF token
1. goodsite.com server wants to protect itself from

CSRF attacks, so it includes a secret token into the
webpage (e.g., in forms as a hidden field)

2. Requests to goodsite.com include the secret
3. goodsite.com server checks that the token

embedded in the webpage is the expected one;
reject request if not
Can the token be?

• 123456

• Dateofbirth

CSRF token must be hard to
guess by the attacker

● The server stores state that binds the user's CSRF
token to the user's session id

● Embeds CSRF token in every form

● On every request the server validates that the
supplied CSRF token is associated with the user's
session id

● Disadvantage is that the server needs to maintain
a large state table to validate the tokens.

How the token is used

