Web Security:
Session management

CS 161: Computer Security

Prof. Raluca Ada Popa

Some content adapted from materials by David Wagner or Dan Boneh

Announcements

« Starting recording

* Project 3 part 1 due Tuesday, April 14 at
11:59pm

Cookies

A way of maintaining state in the browser

Browser GET ...

Server

l‘%
i

% /
457 Kt
§ w

e http response contains *

Browser maintains cookie
jar with all cookies it
receives

Setting/deleting cookies by server

GET ...

Server

HTTP Header:
Set-cookie@ NAME=VALUE ;

* The first time a browser connects to a particular
web server, it has no cookies for that web server

 When the web server responds, it includes a Set-
Cookie: header that defines a cookie

« Each cookie is just a name-value pair (with some
extra metadata)

View a cookie

IN @ web coNSOIE (refox took->web developer->web console),
type

document.cookie
to see the cookie for that site

Each name=value is one cookie.
document.cookie lists all cookies in scope for document

Cookie scope

GET ...

Server

HTTP Header:

Set-cookie@) NAME=VALUE ;
domain = (when to send) j scope
path = (when to send)

 When the browser connects to the same server later, it
automatically attaches the cookies in scope: header

containing the name and value, which the server can
use to connect related requests.

 Domain and path inform the browser about which sites
to send this cookie to

Cookie scope

GET ...

Server

HTTP Header:

Set-cookie@ NAME=VALUE ;
domain = (when to send) ;
path = (when to send)
secure = (only send over

HTTPS);

* Secure: sent over https only

https provides secure communication using TLS
(privacy and integrity)

Cookie scope

GET ...

Server

HTTP Header:

Set-cookie@ NAME=VALUE ;
domain = (when to send) ; scope
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

* Expires is expiration date

. Delete cookie by setting “expires” to date in past

* HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser (defense in depth, but does not prevent XSS)

Cookie policy

The cookie policy has two parts:

1. What scopes a URL-host name web server
Is allowed to set on a cookie

2. When the browser sends a cookie to a URL

Cookie scope

« Scope of cookie might not be the same as the
URL-host name of the web server setting it

What scope a server may set for a cookie

The browser checks if the web server may set the cookie,
and if not, it will not accept the cookie.

domain: any domain-suffix of URL-hostname, except TLD

[top-level domains,

example: host = “login.site.com” c.q. *.com’]
allowed domains disallowed domains
login.site.com user.site.com
.Site.com othersite.com
.com

= login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu
path: can be set to anything

Examples

Web server at foo.example.com wants to set
cookie with domain:

domain Whether it will be set

(value omitted) foo.example.com (exact)

bar.foo.example.com

foo.example.com

baz.example.com

example.com yes

ample.com

.com

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michait Zalewski

When browser sends cookie

e GET //URL-domain/URL-path | Sc'Ver

Cookie: NAME = VALUE

Goal: server only sees cookies in its scope

Browser sends all cookies in URL scope:

* cookie-domain is domain-suffix of URL-domain, and
* cookie-path is prefix of URL-path, and
* [protocol=HTTPS if cookie is “secure’]

When browser sends cookie

@ GET //URL-domain/URL-path | Sc'Ver

Cookie: NAME = VALUE

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Examples: Which cookie will be sent?

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com | domain = .site.com
path =/ path =/
non-secure non-secure

http://checkout.site.com/ cookie: userid=u2

http://login.site.com/ cookie: userid=ul, userid=u2
http://othersite.com/ cookie: none

Credits:

Examples

Web server at foo.example.com wants to set

cookie with domain:

domain

Whether it will be set, and if so,
where it will be sent to

(value omitted)

foo.example.com (exact) 0

bar.foo.example.com

Cookie not set: domain more specific than origin

foo.example.com 3
baz.example.com Cookie not set: domain mismatch
example.com o)

ample.com

Cookie not set: domain mismatch

.com

Cookie not set: domain too broad, security risk

The Tangled Web: A Guide to Securing Modern Web Applications, by Michat Zalewski

Credits:

Examples

Web server at foo.example.com wants to set

cookie with domain:

domain

Whether it will be set, and if so,
where it will be sent to

(value omitted)

foo.example.com (exact) * foo.example.com

bar.foo.example.com

Cookie not set: domain more specific than origin

foo.example.com

* foo.example.com

baz.example.com

Cookie not set: domain mismatch

example.com

* . example.com

ample.com

Cookie not set: domain mismatch

.com

Cookie not set: domain too broad, security risk

The Tangled Web: A Guide to Securing Modern Web Applications, by Michat Zalewski

Examples

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com | domain = .site.com
path =/ path =/

secure non-secure

nttp://checkout.site.com/ cookie: userid=u2

nttp://login.site.com/ cookie: userid=u2

https://login.site.com/ cookie: userid=ul; userid=u2
(arbitrary order)

Client side read/write: document.cookie

« Setting a cookie in Javascript:
document.cookie = “name=value; expires=...;

7

* Reading a cookie: alert(document.cookie)

prints string containing all cookies available for
document (based on [protocol], domain, path)

* Deleting a cookie:

document.cookie = “name=; expires= Thu, 01-Jan-
OO”

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser Ul

Firefox: Tools -> page info -> security -> view cookies

@ Cookie — (e
Search: Clear

The following cookies are stored on your computer:

Site Cookie Name
__ google.com NID -
__ google.com SNID

__| google.com _utmz

google.com

|
(-
s
3
~
1

__ google.com

Name: _utma
Content: 173272373.288555819.1215984872.1215984872.1215984872.1

Domain: .google.com
Path: /adsense/

Send For: A -
Expires-@unday, January 17, 2038 4:00:00 PD
[Remove Cockie } | Remove All Cookies]

Cookie policy versus
same-origin policy

Cookie policy versus same-origin policy

« Consider Javascript on a page loaded from a
URL U

 |f a cookie is in scope for a URL U, it can be

accessed by Javascript loaded on the page
with URL U,

unless the cookie has the httpOnly flag set.

So there isn’t exact domain match as in same-
origin policy, but cookie policy instead.

Examples

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com | domain = .site.com
path =/ path =/
non-secure non-secure

http://checkout.site.com/ cookie: userid=u2

http://login.site.com/ cookie: userid=ul, userid=u2
http://othersite.com/ cookie: none

JS on each of these URLs can access the corresponding
cookies even if the domains are not the same

Indirectly bypassing same-origin
policy using cookie policy

 Since the cookie policy and the same-
origin policy are different, there are
corner cases when one can use cookie
policy to bypass same-origin policy

* |deas how?

Example

Victim user browser

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

The browser will send the cookie for
financial.example.com to
= blog.example.com due to domain

cookies in jar with domain
example.com

Example

Victim user browser

financial.example.com
web server

blog.example.com
web server

> financial.example.com

s
oA i
ERESEn

*sr(domain:financial.example

m) (assume attacker

compromised this web server)
Browsers maintain a separate cookie jar per
domain group, such as one jar for
*.example.com to avoid one domain filling
up the jar and affecting another domain.
cookie jar Each browser decides at what granularity to
hold group domains.

{¢% blog.example.com

Example

Victim user browser

, < financial.example.com

web server

S —

et- cookle
- blog.example.com
web server

(assume attacker
compromised this web server)

Attacker sets many cookies with
domain example.com which

cookie jar for *.example.com overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Example

Victim user browser

financial.example.com
web server

%2 example.com

blog.example.com

example.com
pl€.co web server

(assume attacker
compromised this web server)

Attacker sets many cookies with
domain example.com which

cookie jar for *.example.com overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Example

Victim user browser

financial.example.com
web server

When Alice visits
financial.example.com, the
browser automatically
attaches the attacker’s
cookies due to cookie
policy (the scope of the
cookies is a domain suffix
of financial.example.com)

%2 example.com

example.com

cookie jar for *.example.com

Why is this a problem?

Indirectly bypassing same-origin
policy using cookie policy

* Victim thus can login into attackers
account at financial.example.com

* This is a problem because the victim
might think its their account and might
provide sensitive information

* This also bypassed same-origin policy

(indirectly) because blog.example.com
influenced financial.example.com

RFC6265

- For further details on cookies, checkout
the standard RFC6265 "HT TP State
Management Mechanism”

https://tools.ietf.org/html/rfc6265

- Browsers are expected to implement this
reference, and any differences are
browser specific

