
Web Security:
Injection attacks

CS 161: Computer Security

Prof. Raluca Ada Popa

April 3, 2020

Some content adapted from materials by David Wagner or Dan

Boneh

Announcements

• Starting recording
• Please turn on video if you can
• Midterm 2 April 6 at 5pm PT

– The exam will cover lectures from after midterm 1
(starting with hashing) until April 3rd

– Review Saturday April 4 at 5pm Pacific
• Homework 3a, due Sunday, April 5, at 11:59pm

PST
– Mid-semester survey attached

Web security attacks

What can go bad if a web server is compromised?

• Steal sensitive data (e.g., data from many users)

• Change server data (e.g., affect users)

• Gateway to enabling attacks on clients

• Impersonation (of users to servers, or vice versa)

• Others

4

A set of common attacks

• SQL Injection
– Browser sends malicious input to server
– Bad input checking leads to malicious SQL query

• XSS – Cross-site scripting
– Attacker inserts client-side script into pages viewed

by other users, script runs in the users’ browsers
• CSRF – Cross-site request forgery

– Bad web site sends request to good web site, using
credentials of an innocent victim who “visits” site

5

Injection attacks

6

Historical perspective

• The first public discussions of SQL
injection started appearing around 1998

7

In the Phrack magazine

First published in 1985

phreak +
hack

Hundreds of proposed fixes and solutions

Top web vulnerabilities

8
Please don’t repeat common mistakes!!

!!!

• Attacker user provides bad input
• Web server does not check input format
• Enables attacker to execute arbitrary code

on the server

• What attack does this remind you of?

General code injection attacks

Example:
code injection based on eval (PHP)

• $_GET[‘A’]: gets the input with value A from
a GET HTTP request
• $_POST[‘B’]: gets the input with value B from
a POST HTTP request

10

1. User visits calculator and writes 3+5 ENTER
2. User’s browser sends HTTP GET request http://site.com/
calc.php?exp=“ 3+5”

3. Script at server receives http request and runs
$_GET(“exp”) =“ 3+5”

Example:
code injection based on eval (PHP)

• eval allows a web server to evaluate a string
as code

• e.g. eval(‘$result = 3+5’) produces 8

$exp = $_GET[‘exp'];
eval(’$result = ' . $exp . ';');

calculator: http://site.com/
calc.php

Attack?:

 http://site.com/
calc.php?exp=“ 3+5”

http://site.com/calc.php?exp=“ 3+5 ; system(‘rm *.*’)”

Code injection using system()

• Example: PHP server-side code for sending email

• Attacker can post

 $email = $_POST[“email”]
 $subject = $_POST[“subject”]
 system(“mail $email –s $subject < /tmp/joinmynetwork”)

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net &
 subject=“foo < /usr/passwd; ls”

SQL injection

13

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Browser

Database
server

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Database
server

Database query
built from x and y

Browser

Structure of Modern Web Services

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Structure of Modern Web Services

Web
server

Web page built
using custom data

Database
server

Browser

Databases
• Structured collection of data

– Often storing tuples/rows of related values
– Organized in tables

Customer
AcctNum Username Balance

1199 zuckerberg 35.7

0501 bgates 79.2

… … …

• Widely used by web services to store server and
user information

• Database runs as separate process to which
web server connects
– Web server sends queries or commands

derived from incoming HTTP request
– Database server returns associated values or

modifies/updates values

Databases

SQL
• Widely used database query language

– (Pronounced “ess-cue-ell” or “sequel”)
• Fetch a set of rows:
 SELECT column FROM table WHERE condition
 returns the value(s) of the given column in the specified

table, for all records where condition is true.
• e.g:
 SELECT Balance FROM Customer

WHERE Username='bgates'
will return the value 79.2

Customer

AcctNum Username Balance

1199 zuckerberg 35.71

0501 bgates 79.2

… … …

… … …

SQL (cont.)
• Can add data to the table (or modify):

INSERT INTO Customer VALUES (8477, 'oski', 10.00);

Customer
AcctNum Username Balance

1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

… … …

SQL (cont.)
• Can delete entire tables:
 DROP TABLE Customer

• Issue multiple commands, separated by
semicolon:

 INSERT INTO Customer VALUES (4433, 'vladimir',
70.0); SELECT AcctNum FROM Customer
WHERE Username='vladimir'

 returns 4433.

SQL Injection Scenario

• Suppose web server runs the following code:

• Server stores URL parameter “recipient” in variable
$recipient and then builds up a SQL query

• Query returns recipient’s account number
• Server will send value of $sql variable to database

server to get account #s from database

 $recipient = $_POST[‘recipient’];
 $sql = "SELECT AcctNum FROM Customer

WHERE Username='$recipient' ";
 $rs = $db->executeQuery($sql);

SQL Injection Scenario

• Suppose web server runs the following code:

• So for “?recipient=Bob” the SQL query is:
"SELECT AcctNum FROM Customer WHERE

 Username='Bob' "

 $recipient = $_POST[‘recipient’];
 $sql = "SELECT AcctNum FROM Customer

WHERE Username='$recipient' ";
 $rs = $db->executeQuery($sql);

Basic picture: SQL Injection
Victim Web Server

SQL DB

Attacker

post
malic

ious
form

unintended
SQL queryreceive valuable

data

1

2

3

$reci
pient

 spec
ified

 by

attac
ker

How can $recipient cause
trouble here?

Problem

Untrusted user input ‘recipient’ is embedded
directly into SQL command
Attack:
$recipient = alice’; SELECT * FROM Customer;’

 $recipient = $_POST[‘recipient’];
 $sql = "SELECT AcctNum FROM Customer

WHERE Username='$recipient' ";
 $rs = $db->executeQuery($sql);

Returns the entire contents of
the Customer!

27

CardSystems Attack

• CardSystems
– credit card payment processing company
– SQL injection attack in June 2005
– put out of business

• The Attack
– 263,000 credit card #s stolen from database
– credit card #s stored unencrypted
– 43 million credit card #s exposed

29

Another example: buggy login page (ASP)

set ok = execute(

"SELECT * FROM Users
 WHERE user=' " &
form(“user”) & " '
 AND pwd=' " & form(“pwd”) &
“ '”);

if not ok.EOF
 login success
else fail;

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

Normal
Query

(1 row)

31

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
 WHERE user=' " & form(“user”) &
" '
 AND pwd=' " & form(“pwd”) & “
'”);

if not ok.EOF
 login success
else fail;

Is this exploitable?

• Suppose user = “ ' or 1=1 -- ” (URL encoded)

• Then scripts does:
ok = execute(SELECT …
 WHERE user= ' ' or 1=1 --
…)

– The “--” causes rest of line to be ignored.
– Now ok.EOF is always false and login succeeds.

• The bad news: easy login to many sites this way.

Bad input

Besides logging in, what else can attacker do?

• Suppose user =
 “ ′ ; DROP TABLE Users -- ”

• Then script does:

ok = execute(SELECT …
 WHERE user= ′ ′ ; DROP TABLE
Users …)

33

Even worse: delete all data!

What else can an attacker do?
• Add query to create another account with

password, or reset a password
Suppose user =
 “ ′ ; INSERT INTO TABLE Users (‘attacker’,

‘attacker secret’); ”

And pretty much everything that can be done by
running a query on the DB!

How to prevent SQL injection?

• Ideas?

 SQL Injection Prevention
• Sanitizate user input: check or enforce

that value/string does not have
commands of any sort

Disallow special characters, or
Escape input string

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;’

How to escape input

Web
Server DB

query

You “escape” the SQL parser

Parser
commands

How to escape input

• The input string should be interpreted as
a string and not as a special character

• To escape the SQL parser, use
backslash in front of special characters,
such as quotes or backslashes

The SQL Parser does…
If it sees ’ it considers a string is starting or ending
If it sees \’ it considers it just as a character part of a
string and converts it to ‘

The username will be matched against
alice’; SELECT * FROM People;’ and no match found

Different parsers have different escape sequences or
API for escaping

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;\’

For

Examples
• What is the string username compared to (after SQL

parsing), and when does it flag a syntax error? (syntax
error appears at least when quotes are not closed)

 [..] WHERE Username=’alice’; alice

 [..] WHERE Username=’alice\’;

 [..] WHERE Username=’alice\’’;

 [..] WHERE Username=’alice\\’;
because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not
closed

SQL Injection Prevention
• Avoid building a SQL command based on raw user input,

use existing tools or frameworks
• E.g. (1): the Django web framework has built in sanitization

and protection for other common vulnerabilities
– Django defines a query abstraction layer which sits atop

SQL and allows applications to avoid writing raw SQL
– The execute function takes a sql query and replaces

inputs with escaped values

• E.g. (2): Or use parameterized/prepared SQL

42

Parameterized/prepared SQL
• Builds SQL queries by properly escaping args: ′ → \′

• Example: Parameterized SQL: (ASP.NET 1.1)
– Ensures SQL arguments are properly escaped.

 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM UserTable WHERE
 username = @User AND
 password = @Pwd", dbConnection);

 cmd.Parameters.Add("@User", Request[“user”]);

 cmd.Parameters.Add("@Pwd", Request[“pwd”]);

 cmd.ExecuteReader();

How to prevent general injections

• Sanitize input from the user!
• Use frameworks/tools that already check user input

Similarly to SQL injections:

44

Summary

• Injection attacks were and are the most common
web vulnerability

• It is typically due to malicious input supplied by an
attacker that is passed without checking into a
command; the input contains commands or alters
the command

• Can be prevented by sanitizing user input

