Web Security:
Injection attacks

CS 161: Computer Security

Prof. Raluca Ada Popa

Some content adapted from materials by David Wagner or Dan

Announcements

 Starting recording

* Please turn on video if you can

e Midterm 2 April 6 at 5pm PT

— The exam will cover lectures from after midterm 1
(starting with hashing) until April 3rd

— Review Saturday April 4 at 5pm Pacific

 Homework 3a, due Sunday, April 5, at 11:59pm
PST

— Mid-semester survey attached

Web security attacks

What can go bad if a web server is compromised?

Steal sensitive data (e.g., data from many users)
Change server data (e.g., affect users)
Gateway to enabling attacks on clients

Impersonation (of users to servers, or vice versa)

Others

A set of common attacks

« SQL Injection

— Browser sends malicious input to server

— Bad input checking leads to malicious SQL query
« XSS - Cross-site scripting

— Attacker inserts client-side script into pages viewed
by other users, script runs in the users’ browsers

 CSRF - Cross-site request forgery

— Bad web site sends request to good web site, using
credentials of an innocent victim who “visits” site

Injection attacks

Historical perspective

» The first public discussions of SQL

Injection started appearing around 1998

phreak +
hack

In the Phrack magazine

First published in 1985

#@Hundreds of proposed fixes and solutions

Top web vulnerabilities

OWASP Top 10 - 2013 =

OWASP Top 10 - 2017

A1 — Injection 111 = A1:2017-Injection

A2 - Broken Authentication and Session Management

A3 - Cross-Site Scripting (XSS)

>
A

A2:2017-Broken Authentication

A3:2017-Sensitive Data Exposure

A4 - Insecure Direct Object References [Merged+A7] o |) A4:2017-XML External Entities (XXE) [NEW]
A5 - Security Misconfiguration N A5:2017-Broken Access Control [Merged]
—

A6 — Sensitive Data Exposure

.

o
A7 — Missing Function Level Access Contr [Merged+A4] U

A8 — Cross-Site Request Forgery (CSRF)
A9 - Using Components with Known Vulnerabilities

A10 - Unvalidated Redirects and Forwards

>

A6:2017-Security Misconfiguration

A7:2017-Cross-Site Scripting (XSS)

A8:2017-Insecure Deserialization [NEW, Community]
A9:2017-Using Components with Known Vulnerabilities

A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Please don’t repeat common mistakes!!

General code injection attacks

Attacker user provides bad input
Web server does not check input format

Enables attacker to execute arbitrary code
on the server

What attack does this remind you of?

Example:
code injection based on eval (PHP)

« $ GET['A’]: gets the input with value A from
a GET HTTP request

« $ POST['B’]: gets the input with wvalue B from
a POST HTTP request

1. User visits calculator and writes 3+5 ENTER
2. User’s browser sends HTTP GET request http://site.com/
calc.php?exp=" 3+5”

3. Script at server receives http request and runs
$ GET (“exp”) =" 3+5”

10

Example:
code injection based on eval (PHP)

« eval allows a web server to evaluate a string
as code

e e.g. eval(‘Sresult = 3+5’) produces 8

calculator: http://site.con

http://sigg;SOB?p
ﬂ . calc.php?exp=" 3+5”
&

$exp = $ GET[‘exp'];
eval (' $result = ' . Sexp . ';'")

RN

.o

Attack?:

http://site.com/calc.php?exp=" 3+5 ; system(‘rm *.*’)”

Code injection using system()

« Example: PHP server-side code for sending email

$email = § POST[“email”]
$subject = $ POST[“subject”]
system(“'mail $email -s $subject < /tmp/joinmynetwork”)

TeeA W VWY A — W I | Vvv-

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &

subject=“foo < /usr/passwd; l1ls”

SQL injection

13

Structure of Modern Web Services

gee

Browser

Y

URL / Form

command.php?

argl=x&arg2=y

4

Web
server

Database
server

Structure of Modern Web Services

gee

Browser

@ O

URL / Form

command.php?
argl=x&arg2=y

4

Web
server

Database query
built from x and y

Database
server

Structure of Modern Web Services

gee

Browser Web

@ | @ server

corresponding to x &

Custom data J
y

Database
server

Structure of Modern Web Services

gee

Browser

Y

Web page built
using custom data

Web
server

Database
server

ML—IS&@
PostgreSQL
Databases O mongo
e Structured collection of data ORACLE’

— Often storing tuples/rows of related values
— Organized in tables

Customer
AcctNum | Username Balance
1199 [zuckerberg 35.7

0501 [bgates 79.2

Databases

« Widely used by web services to store server and
user information

« Database runs as separate process to which
web server connects

— Web server sends queries or commands
derived from incoming HTTP request

— Database server returns associated values or
modifies/updates values

SQL

* Widely used database query language

— (Pronounced “ess-cue-ell” or “sequel”)
Fetch a set of rows:
SELECT column FROM table WHERE condition

returns the value(s) of the given column in the specified
table, for all records where condition is true.

e.g:
SELECT Balance FROM Customer Customer
WHERE Username='bgates' AcctNum Username Balance

1199 zuckerberg

35.71

will return the value 79.2

0501 bgates

79.2

SQL (cont.)

* Can add data to the table (or modify):

INSERT INTO Customer VALUES (8477, 'oski’, 10.00);

Customer
AcctNum Username Balance
1199 zuckerberg 35.7
0501 bgates 79.2

8477 oskKi 10.00

SQL (cont.)

 (Can delete entire tables:
DROP TABLE Customer

* |ssue multiple commands, separated by
semicolon:

INSERT INTO Customer VALUES (4433, 'vladimir',
70.0); SELECT AcctNum FROM Customer
WHERE Username='vladimir’

returns 4433.

SQL Injection Scenario

Suppose web server runs the following code:
$recipient =$ POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer
WHERE Username="$recipient’ "“;

$rs = $db->executeQuery($sql);

Server stores URL parameter “recipient” in variable
$recipient and then builds up a SQL query

Query returns recipient’s account number

Server will send value of $sql variable to database
server to get account #s from database

SQL Injection Scenario

e Suppose web server runs the following code:
$recipient =$ POST[‘recipient’];
$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient’ ";

$rs = $db->executeQuery($sql);

* So for "?recipient=Bob” the SQL query is:

"SELECT AcctNum FROM Customer WHERE
Username='Bob'"

Basic picture: SQL Injecti

Victim Web

receive valuable

Attacker data

How can Srecipient cause
trouble here?

on

Server

unintended
SQL query

Problem

$recipient = $_POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer
WHERE Username="$recipient’ "“;

$rs = $db->executeQuery($sql);

Untrusted user input ‘recipient’ is embedded
directly into SQL command

Attack:
$recipient = alice’; SELECT * FROM Customer;’

Returns the entire contents of
the Customer!

CardSystems Attack %‘,

e CardSystems
— credit card payment processing company
— SQL injection attack in June 2005
— put out of business

* The Attack
— 263,000 credit card #s stolen from database
— credit card #s stored unencrypted
— 43 million credit card #s exposed

27

Anonymous speaks: the inside story of the HBGary hack

By Peter Bright |

The hbgaryfederal.com CMS was susceptible to a kind of attack called . In common with other
CMSes, the hbgaryfederal.com CMS stores its data in an SQL database, retrieving data from that database
with suitable queries. Some queries are fixed—an integral part of the CMS application itself. Others, however,
need parameters. For example, a query to retrieve an article from the CMS will generally need a parameter

corresponding to the article ID number. These parameters are, in tumn, generally passed from the Web front-
end to the CMS.

It has been an embarrassing week for security firm HBGary and its HBGary Federal offshoot. HBGary Federal
CEO Aaron Barr thought he had unmasked the hacker hordes of Anonymous and was preparing to name and
shame those responsible for co-ordinating the group's actions, including the denial-of-service attacks that hit
MasterCard, Visa, and other perceived enemies of WikiLeaks late last year.

When Barr told one of those he believed to be an Anonymous ringleader about his forthcoming exposé, the
Anonymous response was swift and humiliating. HBGary's servers were broken into, its e-mails pillaged and
published to the world, its data destroyed, and its website defaced. As an added bonus, a second site owned

Another example: buggy login page (ASP)

set ok = execute(

"SELECT * FROM Users

WHERE user=' " &
form(Yuser”) & " '
AND pwd=' " & form(“pwd”) &

W\ V77) °
4

i1f not ok.EOF
login success
else fail;

29

Web
Browser
(Client)

Enter
Username
&
Password

Web
Server

SELECT ¥
FROM Users
WHERE user='me'
AND pwd='1234"

(1 row)

A4

DB

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) &

1A 1

AND pwd=' " & form(“pwd”) & ™

V77).
’

if not ok.EOF
login success
else fail;

Is this exploitable?
31

Bad input

« Suppose user=" 'or 1=1 -- 7 (URL encoded)

 Then scripts does:
ok execute (SELECT ..
WHERE user= ' ' or 1=1 --

.)
— The “--" causes rest of line to be ignored.

— Now ok.EOF is always false and login succeeds.

 The bad news: easy login to many sites this way.

Besides logging in, what else can attacker do?

Even worse: delete all data!

* Suppose user =
“ ' DROP TABLE Users -- ?

* Then script does:

ok = execute(SELECT ..

WHERE user= ' ' ; DROP TABLE
Users ..)

33

What else can an attacker do?

* Add query to create another account with

password, or reset a password
@Suppose user =

“ ', INSERT INTO TABLE Users (‘attacker’,
‘attacker secret’); ”

@And pretty much everything that can be done by
running a query on the DB!

How to prevent SQL injection?

e |deas?

SQL Injection Prevention

« Sanitizate user input: check or enforce
that value/string does not have
commands of any sort

@ Disallow special characters, or
@ Escape input string

SELECT PersonlD FROM People WHERE
Username=’ alice\’; SELECT * FROM People;’

How to escape input

You “escape” the SQL parser

Web
Server

query

A4

Parser

commands

>

DB

How to escape input

* The input string should be interpreted as
a string and not as a special character

* To escape the SQL parser, use
backslash in front of special characters,
such as quotes or backslashes

The SQL Parser does...

@If it sees ' it considers a string is starting or ending

@If it sees \' it considers it just as a character part of a
string and converts itto "

For

SELECT PersonlD FROM People WHERE
Username=’ alice\’; SELECT * FROM People;\’

The username will be matched against
alice’; SELECT * FROM People;” and no match found

@Different parsers have different escape sequences or
API for escaping

Examples

« What is the string username compared to (after SQL
parsing), and when does it flag a syntax error? (syntax
error appears at least when quotes are not closed)

[..] WHERE Username=’alice’; ailice

[..] WHERE Username=’alice\’; Syntax error, quote not
closed

[..] WHERE Username=’alice\”; alice’

[..] WHERE Username=’alice\\’; alice\

because \\ gets converted to \ by the parser

SQL Injection Prevention

 Avoid building a SQL command based on raw user input,
use existing tools or frameworks

« E.g. (1): the Django web framework has built in sanitization
and protection for other common vulnerabilities

— Django defines a query abstraction layer which sits atop
SQL and allows applications to avoid writing raw SQL

— The execute function takes a sql query and replaces
iInputs with escaped values

* E.g. (2): Oruse parameterized/prepared SQL

Parameterized/prepared SQL

I - \l

« Builds SQL queries by properly escaping args:

« Example: Parameterized SQL: (ASP.NET 1.1)
— Ensures SQL arguments are properly escaped.

SglCommand cmd = new SglCommand (
"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add ("@User", Request[“user”]);

cmd.Parameters.Add ("@Pwd", Request[“pwd”]);

cmd . ExecuteReader () ;

42

How to prevent general injections

Similarly to SQL injections:

« Sanitize input from the user!
« Use frameworks/tools that already check user input

HL THIS 1S OH, DEAR - DID HE
YOUR SONS SCHOOL. | BREAK SOMETHING?
VERE HAVING SOME

CoMPUTER TROWRLE. | ' A WAY

o ﬁm

44

Summary

* Injection attacks were and are the most common
web vulnerability

 ltis typically due to malicious input supplied by an
attacker that is passed without checking into a
command; the input contains commands or alters

the command

« Can be prevented by sanitizing user input

