
Secure Channels

CS 161: Computer Security
Prof. Raluca Ada Popa

 March 30, 2020

Some slides credit David Wagner

Announcements
• I will turn on recording in Zoom
• Please turn on video so I can see you
• Midterm 2 April 6 at 5pm PT

– The exam will cover lectures from after midterm 1
(starting with hashing) until April 3rd

• Homework 3a, due Sunday, April 5, at 11:59pm PST
– Mid-semester survey attached

Building A Secure End-to-End
Channel: TLS

• TLS = Transport Layer Security
• Secure channel for applications that use TCP

– Secure = encryption/confidentiality + integrity +
 authentication (of server, but not of client)

– E.g., puts the ‘s’ in “https”

Regular web surfing - http: URL

But if we click here …

Web surfing with TLS - https: URL

Note: Amazon makes sure that all of these
images, etc., are now also fetched via
https: URLs.

Doing so gives the web page full integrity,
in keeping with end-to-end security.

(Browsers do not provide this “promotion”
automatically.)

RSA Encryption

We saw RSA in class as a digital signature
scheme, but it can also be used as a public-
key encryption algorithm:
•The encrypt algorithm is similar to the verify
algorithm, and the decrypt similar to the sign
algorithm
•Small differences: encrypt the message with
special padding, instead of signing a hash of
the message

1. Suppose a browser (client) connects to a server which returns
a certificate from a trusted CA

2. Client browser and server will exchange symmetric keys using
TLS

3. Then, they will send encrypted & authenticated traffic to each
other

HTTPS Connection (TLS)

HTTPS Connection (SSL / TLS)
• Browser (client) connects to

Amazon’s HTTPS server

• Client picks 256-bit random number
RB, sends over list of crypto
algorithms it supports

• Server picks 256-bit random number
RS, selects algorithms to use for this
session

• Server sends over its certificate with
its PKAmazon

(all of this is in the clear)

• Client now validates cert

Browser Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA256) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA256

Here’s my PK and cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS), cont.
• For RSA, browser constructs

“Premaster Secret” PS
• Browser sends PS encrypted using

Amazon’s public RSA key PKAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}PKAmazon

PS

PS

Amazon
Server

HTTPS Connection (SSL / TLS), cont.
• For RSA, browser constructs

“Premaster Secret” PS
• Browser sends PS encrypted using

Amazon’s public RSA key PKAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}PKAmazon

PS

PS

These seed a cryptographically strong pseudo-random number
generator (PRNG).
Q: why RB and RS?
A: prevents a replay attack, attacker captures handshake from
either the client or server and replays it. Why not only one of
them? You don't need to check for reuse by the other side... just
make sure you don't reuse it on your side!

Amazon
Server

HTTPS Connection (SSL / TLS), cont.
• For RSA, browser constructs

“Premaster Secret” PS
• Browser sends PS encrypted using

Amazon’s public RSA key PKAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}PKAmazon

PS

PS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Q: Why?
A: So they know they have the same (CB, CS), (IB,
IS)

• For RSA, browser constructs
“Premaster Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key PKAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

• If good MAC, browser displays

HTTPS Connection (SSL / TLS), cont.
Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}PKAmazon

PS

PS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

On Firefox:

On Chrome:

The communication before the green lock is called the SSL
handshake; its purpose is to establish shared symmetric keys for
secure communication.

• For RSA, browser constructs
“Premaster Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key PKAmazon

• Using PS, RB, and RS, browser & server
derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

• If good MAC, Browser displays
• All subsequent communication

encrypted w/ symmetric cipher (e.g.,
AES128) cipher keys in some agreed
upon chaining mode, MACs
– Sequence #’s included with every

message to thwart replay attacks

HTTPS Connection (SSL / TLS), cont.
Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}PKAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Alternative: Key Exchange via Diffie-Hellman

• For Diffie-Hellman, server
generates random a, sends public
params and ga mod p

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{g, p, ga mod p} SKAmazon

…

Amazon
Server

Q: How can we prevent MITM?
A: Server signs ga mod p
 using SKAmazon, browser verifies
using PKAmazon from server certificate

Alternative: Key Exchange via Diffie-Hellman

• For Diffie-Hellman, server
generates random a, sends public
params and ga mod p
– Signed with server’s private key

• Browser verifies signature using
PK from certificate

• Browser generates random b,
computes PS = gab mod p, sends
to server its public key

• Server also computes
PS = gab mod p

• Remainder is as before: from PS,
RB, and RS, browser & server
derive symm. cipher keys (CB, CS)
and MAC integrity keys (IB, IS),
etc…

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} SKAmazon

…

Amazon
Server

a

b

RSA versus Diffie-Hellman
• Forward secrecy: If attacker steals long term secret

key of server, SKAmazon, should not be able to read
past conversations (cannot compromise past
session keys (CB, CS) & (IB, IS))

• Why matters?
–Attackers log traffic now. Compromise key in future and

try to decrypt the traffic.

• TLS with RSA does not have forward secrecy

• TLS DH has forward secrecy

• For RSA, browser constructs
“Premaster Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key PKAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

• If good MAC, Browser displays
• All subsequent communication

encrypted w/ symmetric cipher (e.g.,
AES128) cipher keys in some
chaining mode, MACs
– Sequence #’s thwart replay attacks

Exchange with RSA

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}PKAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Q: Forward secrecy?
A: No forward secrecy because
attacker can decrypt PS and knows
RB, and RS and computes secrets

Exchange via Diffie-Hellman

• For Diffie-Hellman, server
generates random a, sends public
params and ga mod p
– Signed with server’s private key

• Browser verifies signature using
PK from certificate

• Browser generates random b,
computes PS = gab mod p, sends
to server

• Server also computes
PS = gab mod p

• Remainder is as before: from PS,
RB, and RS, browser & server
derive symm. cipher keys (CB, CS)
and MAC integrity keys (IB, IS),
etc…

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} SKAmazon

…

Amazon
Server

Q: Forward secrecy?
A: Has forward secrecy because
shared secret never sent over the
network! If attacker as SKAmazon,
cannot decrypt a.

HTTPS Connection (SSL / TLS)

• Browser (client) connects via
TCP to Amazon’s HTTPS server

• Client picks 256-bit random
number RB, sends over list of
crypto protocols it supports

• Server picks 256-bit random
number RS, selects protocols to
use for this session

• Server sends over its certificate
• (all of this is in the clear)

• Client now validates cert

SYN

SYN ACK

ACK

Browser

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

Amazon
Server

Certificates
• Browser compares domain name in cert w/ URL
–Note: this provides an end-to-end property

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer
or CA
– These are hardwired into the browser – and trusted!

• Browser applies CA’s public key to verify signature
S, obtaining hash of what CA signed
–Compares with its own SHA-256 hash of Amazon’s cert

• Assuming hashes match, now have high
confidence it’s indeed Amazon with that PK…
– assuming signatory is trustworthy = assuming didn’t lose

private key; assuming
didn’t sign thoughtlessly

End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi session?
– (maybe by breaking crummy WEP security)
– But: encrypted communication is unreadable

• No problem!

• DNS cache poisoning gives client wrong IP address
– Client goes to wrong server
– But: certificate won’t match

• No problem!

• Attacker hijacks our connection, injects new traffic
– But: data receiver rejects it due to failed integrity check

• No problem!

Powerful Protections, cont.

• Attacker manipulates routing to run us by an
eavesdropper or take us to the wrong server?
– But: they can’t read; we detect impersonation

• No problem!

• Attacker slips in as a Man In The Middle?
– But: they can’t read, they can’t inject
– They can’t even replay previous encrypted traffic
– No problem!

Validating Amazon’s Identity, cont.
• Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?

Validating Amazon’s Identity, cont.
• Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?
• If it can’t find the cert, then warns the user that site

has not been verified
–Can still proceed, just without authentication

• Q: Which end-to-end security properties do we lose if
we incorrectly trust that the site is whom we think?

• A: All of them!
–Goodbye confidentiality, integrity, authentication
–Man in the middle attacker can read everything, modify,

impersonate

SSL / TLS Limitations
• Properly used, SSL / TLS provides powerful end-to-

end protections
• Used by many sites, reasons why not all sites:
–Cost of public-key crypto (fairly minor)

o Takes non-trivial CPU processing (but today a minor issue)
o Note: symmetric key crypto on modern hardware is non-issue

–Hassle of buying/maintaining certs (Let’s Encrypt
addresses it)

– Integrating with other sites that don’t use HTTPS
– Latency: extra round trips ⇒ 1st page slower to load
–Cannot cache encrypted pages

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• TCP-level denial of service
–SYN flooding
–RST injection

o (but does protect against data injection!)

• server-side coding/logic flaws
• Vulnerabilities introduced by server inconsistencies

Regular web surfing: http: URL

So no integrity - a MITM
attacker can alter pages
returned by server …

And when we click here …
… attacker has changed the corresponding link so
that it’s ordinary http rather than https!

We never get a chance to use TLS’s protections! :-(

“sslstrip” attack

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• server-side coding/logic flaws
• Vulnerabilities introduced by server inconsistencies
• Browser coding/logic flaws
• User flaws
–Weak passwords
–Phishing

• Issues of trust …

TLS/SSL Trust Issues

• User has to make correct trust decisions …

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

TLS/SSL Trust Issues, cont.
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

TLS/SSL Trust Issues
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …

TLS/SSL Trust Issues
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …
• … and it’s not just their diligence & security that

matters …
– “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they don't
even do that much.” - Matt Blaze, circa 2010

Conclusion

• Use SSL/TLS to secure communications
end-to-end

• Relies on trustworthiness of certificates,
which does not always hold

