Lecture 25:
Detection, Secure Channels

https://cs161.0rg

Announcements

. Please turn on video so | can see you

- Campus has just announced default P/NP (with option for
letter grade)

- Work hard on Project 2 — note, no staff support over spring
break

Computer Science 161 Spring 2020 Popa and Wagner

Detection

Detection Accuracy

Computer Science 161 Spring 2020 Popa and Wagner

- Two types of detector errors:

* False positive (FP): alerting about a problem when in fact there was no problem
* False negative (FN): failing to alert about a problem when in fact there was a problem

- Detector accuracy is often assessed in terms of rates at which

these occur:

* Define | to be the event of an instance of intrusive behavior occurring (something we
want to detect)

* Define A to be the event of detector generating alarm

» Define:
« False positive rate = P[A|-l]
« False negative rate = P[-A| |]

Perfect Detection

Computer Science 161 Spring 2020 Popa and Wagner

» Is it possible to build a detector for our example with a false
negative rate of 0%?

- Algorithm to detect bad URLs with 0% FN rate:

void my detector that never misses(char *URL)

{

printf ("yep, it's an attack!\n");
}
* |n fact, it works for detecting any bad activity with no false negatives! Woo-hoo!

« Wow, so what about a detector for bad URLs that has no false
positives?
e printf ("nope, not an attack\n");

Detection Tradeoffs

Computer Science 161 Spring 2020 Popa and Wagner

- The art of a good detector Is achieving an effective balance
between FPs and FNs

» Suppose our detector has an FP rate of 0.1% and an FN
rate of 2%. Is it good enough? Which is better, a very low
FP rate or a very low FN rate?

* Depends on the cost of each type of error ...

E.g., FP might lead to paging a duty officer and consuming hour of their time; FN
might lead to $10K cleaning up compromised system that was missed

* ... but also critically depends on the rate at which actual attacks occur In
your environment

Base Rate Fallacy

Computer Science 161 Spring 2020 Popa and Wagner

» Suppose our detector has a FP rate of 0.1% (!) and a FN rate of 2% (not bad!)

- Scenario #1: our server receives 1,000 URLs/day, and 5 of them are attacks

* Expected # FPs each day =0.1% " 995 = 1
e Expected # FNseachday=2% *5=0.1 (< 1/week)
* Pretty good!

» Scenario #2: our server receives 10,000,000 URLs/day, and 5 of them are
attacks
 Expected # FPs each day = 10,000 :-(

- Nothing changed about the detector; only our environment changed
* Accurate detection very challenging when base rate of activity we want to detect is quite low

- This iIs why new recommendations have fewer mammograms and PSA tests...

Styles of Detection: Signature-Based

Computer Science 161 Spring 2020 Popa and Wagner

- |dea: look for activity that matches the structure of a known attack

- Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL NET any -> $HOME NET 139
flow:to server,established

content:" |eb2f 5feb 4a5e 89fb 893e 89f2|"
msqg: "EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

Can be at different semantic layers
e.g.: IP/TCP header fields; packet payload; URLs

Sighature-Based Detection

Computer Science 161 Spring 2020 Popa and Wagner

- E.qg. for FooCorp, searchfor“../../” or “/etc/passwd”

- What’s nice about this approach?
* Conceptually simple
* Takes care of known attacks (of which there are zillions)
 Easy to share signatures, build up libraries

- What’s problematic about this approach?

 Blind to novel attacks
« Might even miss variants of known attacks (“. .///.//../7)
Of which there are zillions

« Simpler versions look at low-level syntax, not semantics
Can lead to weak power (either misses variants, or generates lots of false positives)

Vulnerability Signatures

Computer Science 161 Spring 2020 Popa and Wagner

- |dea: don’t match on known attacks, match on known problems

- Example (also from Snort):
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msqg: '"Web-IIS ISAPI .ida attempt"
reference:bugtraq, 1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

- That is, match URIs that invoke *.ida?*, have more than 239 bytes of payload, and
have ACK set (maybe others t00)

- This example detects attempts to exploit a particular buffer overflow in lIS web servers

* Used by the “Code Red” worm
* (Note, signature is not quite complete: also worked for * . idb?*)

10

Styles of Detection: Anomaly-Based

Computer Science 161 Spring 2020

- |dea: attacks look peculiar.

- High-level approach: develop a model of normal behavior (say

based on analyzing historical logs). Flag activity that deviates
from It.

* FooCorp example: maybe look at distribution of characters in URL

parameters, learn that some are rare and/or don’t occur repeatedly

* |f we happen to learn that ‘.’s have this property, then could detect the attack even
without knowing it exists

- Big benefit: potential detection of a wide range of attacks,
iIncluding novel ones

Anomaly Detection Problems

Computer Science 161 Spring 2020

- Can fail to detect known attacks

- (Can fail to detect novel attacks, if don’t happen to look peculiar
along measured dimension

- What happens if the historical data you train on includes attacks?

- Base Rate Fallacy particularly acute: if prevalence of attacks is

low, then you’re more often going to see benign outliers

- High FP rate

- OR: require such a stringent deviation from “normal” that most attacks are missed (high FN
rate)

* Proves great subject for academic papers but not generally used

12

Specification-Based Detection

Computer Science 161 Spring 2020 Popa and Wagner

» |dea: don’t learn what’s normal; specify what’s allowed

* FooCorp example: decide that all URL parameters sent to
foocorp.com servers must have at most one ‘/’ in them

* Flag any arriving param with > 1 slash as an attack

- What’s nice about this approach?

» (Can detect novel attacks

 (Can have low false positives
If FooCorp audits its web pages to make sure they comply

- What’s problematic about this approach?

 EXpensive: lots of labor to derive specifications

And keep them up to date as things change (“churn”)
13

Styles of Detection: Behavioral

Computer Science 161 Spring 2020

- |dea: don’t look for attacks, look for evidence of compromise

- FooCorp example: inspect all output web traffic for any lines that
match a passwd file

- Example for monitoring user shell keystrokes:
unset HISTFILE

- Example for catching code injection: look at sequences of system
calls, flag any that prior analysis of a given program shows it can’t

generate

 E.g., observe process executing read(), open(), write(), fork(), exec|)
* ... but there’s no code path in the (original) program that calls those in exactly that order!

14

Behavioral-Based Detection

Computer Science 161 Spring 2020 Popa and Wagner

- What’s nice about this approach?

* (Can detect a wide range of novel attacks

 (Can have low false positives

Depending on degree to which behavior is distinctive
E.g., for system call profiling: no false positives!

 (Can be cheap to implement
E.g., system call profiling can be mechanized

- What’s problematic about this approach?

* Post facto detection: discovers that you definitely have a problem, w/ no opportunity to prevent it

* Brittle: for some behaviors, attacker can maybe avoid it

Easy enough to not type “unset HISTFILE”

How could they evade system call profiling?
Mimicry: adapt injected code to comply w/ allowed call sequences (and can be automated!)

15

Summary of Evasion Issues

Computer Science 161 Spring 2020 Popa and Wagner

- Evasions arise from uncertainty (or incompleteness) because detector must
infer behavior/processing it can’t directly observe
* A general problem any time detection separate from potential target

- One general strategy: impose canonical form (“normalize”)

* E.g., rewrite URLs to expand/remove hex escapes
 E.g., enforce blog comments to only have certain HTML tags

- Another strategy: analyze all possible interpretations rather than assuming one
 E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL ...

- Another strategy: Flag potential evasions
* So the presence of an ambiguity is at least noted

- Another strategy: fix the basic observation problem

* E.g., monitor directly at end systems
|16

Inside a Modern HIDS (“Antivirus”)

Computer Science 161 Spring 2020 Popa and Wagner

- URL/Web access blocking

* Prevent users from going to known bad locations

 Protocol scanning of network traffic (esp. HTTP)

e Detect & block known attacks
e Detect & block known malware communication

- Payload scanning

* Detect & block known malware
* (Auto-update of signatures for these)

 Cloud queries regarding reputation

e Who else has run this executable and with what results?

« \What’s known about the remote host / domain / URL?
| 7

Inside a Modern HIDS

Computer Science 161 Spring 2020 Popa and Wagner

- Sandbox execution

e Run selected executables in constrained/monitored environment

* Analyze:

System calls
Changes to files / registry
Self-modifying code (polymorphism/metamorphism)

* File scanning
e Look for malware that installs itself on disk

- Memory scanning
* |Look for malware that never appears on disk

* Runtime analysis

* Apply heuristics/signatures to execution behavior
|8

Inside a Modern NIDS

Computer Science 161 Spring 2020 Popa and Wagner

- Deployment inside network as well as at border
* QGreater visiblility, including tracking of user identity

» Full protocol analysis

* |Including extraction of complex embedded objects
* |n some systems, 100s of known protocols

- Signature analysis (also behavioral)

 Known attacks, malware communication, blacklisted hosts/domains
 Known malicious payloads
* Sequences/patterns of activity

- Shadow execution (e.g., Flash, PDF programs)
 Extensive logging (in support of forensics)
- Auto-update of signatures, blacklists

19

NIDS vs. HIDS

Computer Science 161 Spring 2020 Popa and Wagner

* NIDS benefits:

 (Can cover a lot of systems with single deployment
Much simpler management

* Easy to “bolt on” / no need to touch end systems
* Doesn’t consume production resources on end systems

e Harder for an attacker to subvert / less to trust

« HIDS benefits:

* (Can have direct access to semantics of activity

Better positioned to block (prevent) attacks
Harder to evade

« (Can protect against non-network threats
* Visibility into encrypted activity
* Performance scales much more readily (no chokepoint)

No issues with “dropped” packets
20

Key Concepts for Detection

Slgnature based vs anomaly detection
(blacklisting vs whitelisting)

- Evasion attacks
- Evaluation metrics: False positive rate, false negative rate
- Base rate problem

21

Computer Science 161 Spring 2020 Popa and Wagner

Secure Channels

22

Applying crypto technology In practice

Computer Science 161 Spring 2020 Popa and Wagner

- Two simple abstractions cover 80% of the use cases for
Crypto:

— “Sealed blob”: Data that is encrypted and authenticated under a
particular key (“object security”)

— Secure channel: Communication channel that can’t be
eavesdropped on or tampered with (“channel security”)

« TLS — a secure channel

23

Building Secure End-to-End Channels

Computer Science 161 Spring 2020 Popa and Wagner

- End-to-end = communication protections achieved all the
way from originating client to intended server
* With no need to trust intermediaries

- Dealing with threats:
* Eavesdropping: Encryption (including session keys)
* Manipulation (injection, MITM): Integrity (use of a MAC); replay protection
* Impersonation: Signatures

What’s missing”:
(Avallabillity ...

24

Building A Secure End-to-End Channel: SSL/TLS

Computer Science 161 Spring 2020

» SSL = Secure Sockets Layer (predecessor)

- TLS = Transport Layer Security (standard)

 Both terms used interchangeably

 Security for any application that uses TCP

» Secure = encryption/confidentiality + integrity +
authentication (of server, but not of client)

- Multiple uses
* Puts the 's’ in “https”
« Secures mail sent between servers (STARTTLS)
* Virtual Private Networks

25

An “Insecure” Web Page

Computer Science 161 Spring 2020 Popa and Wagner

mEPemecom: Online Shop... @ Ars Technica

arstechnica.com

PSS TECHNICA Q BiZ&IT TECH SCENCE POLICY CARS GAMING & CULTURE FORUMS =

LATEST STORIES
\] [

o FEATURE STORY

T-Mobile punished by FCC Google Pixel review: The best Android phone,
LI LR even if it is a little pricey

unlimited data
o o | ' Unbeatable Soitware and support with a gréat camera, Wrapped in a familiar exterior.
arrier to pay $7.5 million fine, provide sma 10/18/2016. 6:00 AM

discounts, and improve disclosures.
JON BRODKIN - 10/19/2016, 9:20 AM

26

A “Secure” Web Page

Computer Science 161 Spring 2020 | | A Peo p I e think I Oc k i CO n m ea n S /Agner

gpazon.com: Online Shop... ¢ o S

O Lock Icon means: “Hey, | can trust this site”
~ "~ '(no matter where the lock i |con

Mo\ EW & INTEREST
“Your communication betw itself actually appears)

- your computer and the site .,
Departments ~ BrowsingHsf Lists ~ e s Cart
. S==== is encrypted and authenticated”

amazon

All =

|
. Prime ~
o
W

r

.‘] S

~ | this site belongs to Amazon”
| “These properties hold not just for the
~ | main page, but any image or script is
~ | also fetched from a site with attestatlon
Z/4 and encryption” |

A

o D g tal P e—Orders ' — 5 A di ble cr ed ts A n nﬁ R etht ;‘Fr ;\mazon Customer Since
0 items 1 item > Shop Audiobooks > Free in Prime Music > Programs & Offers for you » 2004

N\A/ Hi, Nicholas

27

Explore AmazonFresh: Now just $14.99/month Leam more Ama7zon (st Caras

Basic Ildea

Popa and Wagner

Browser (client) picks some symmetric srowser Amazon

Server

keys for encryption + authentication w}
- Client sends them to server, encrypted y
using RSA public-key encryption | Mac
k(...
* Both sides send MACSs E\
- Now they use these keys to encrypt and Mg,
authenticate all subsequent messages, \
using symmetric-key crypto

28

HTTPS Connection (SSL / TLS)

Computer Science 161 Spring 2020 Popa and Wagner

: : Amazon
- Browser (client) connects via TCP to browser Server
Amazon’s HTTPS server w}
 Client picks 256-bit random number Rg, W
sends over list of crypto protocols it supports Ack
» Server picks 256-bit random number Rs, Hen
: . L r
selects protocols to use for this session , (SSLi’;’;iA,LZZ;;RB, sup
: o *3Dp; S*SHA Pory
- Server sends over its certificate W
* (all of this is in the clear) | a., Let's use
. . My ‘“dg ;ZSESerS“A‘ |
- Client now validates cert i% |
Here's
ta
n-3 KB of 92 29

HTTPS Connection (SSL / TLS), cont.

Popa and Wagner

Computer Science 161 Spring 2020

- For RSA, browser constructs “Premaster Secret” PS Browser Amazon
- Browser sends PS encrypted using Amazon’s public RSA ert berver
key KAmazon
- Using PS, Rg, and Rs, browser & server derive symm. 2-3 KB °

cipher keys PS- {PS},.

(Cg, Cs) & MAC integrity keys (I, Is)

» One pair to use in each direction | MAC(o’/;g/O 9 PS
I
- Browser & server exchange MACs computed over entire
| d'aIOga\S)
dialog so far MACLA

» If good MAC, Browser displaysa (M

| 1, M
- All subsequent communication encrypted w/ symmetric AC(M7,/B)}C
cipher (e.g., AES128) cipher keys, MACs 2

* Sequence #’s thwart replay attacks " N AC(N\Z,\S“CS :
2 30

