Allca
awe e Hour PK ok . com

Ple, curd > Sk, P,

has <
[/\grolq,solw\ wek = S\gﬂ <S[<cp;, Bk hos TKe)
PChA yo® %ﬁ%)
S Can
Vo St Adv ?\
2 Q)Cp(v’ Q T
15 W CA
+ con Covkoct bank (or auyow)#/
ofdam PK
M C SQ_alo\la(‘ll‘Jap

Gritode hieraroeis & chans + GG
) "0 omaie, psbls
Ve ?(28{0(.0,“*' Mq@y\ P,Q sidoot
/ > = sign (Skg, " U e o3 Py ! epiy)
TS P L L s Ko, o)

cortficadte chosln
e T 03K F Ddd’s pes Toall reecive P, 202,
U

~onck Py wsw C w PK

~ ok P ’% QA

| | _
(ool Seners Serve ek, edun
‘QSL\FDQQ*\DV\
FHow Cown M(bwkt & urhflw_m oS
Nt &615\‘ QJT\VQA?
— ot ll expily, make 6-79':7 shortesr
~ reynCabon Lsts: Ch codd push Tevseokss,
Sign (S CRunke car) A
rvessers S Nt ik solihon Jataande.
brawsers wk o&thc\ou\g R3S

no. dom i We Che.
m by s oY codd, e Jaaded

C‘%U COM W& Vo
o ol
_.MV\SFCLWV\C:B (ocds f)mmS%&f bz?’kol% Yl

Password hashing

CS 161: Computer Security
Prof. Raluca Ada Popa

Passwords

Tension between usability and security

/

choose memorable choose random and
passwords long passwords (hard
to guess)

Attack mechanisms

Online guessing attacks

— Attacker tries to login by trying different user
passwords in the live system

Social engineering and phishing
— Attacker fools user into revealing password
Eavesdropping

— Network attacker intercepts plaintext password on the
connection

Client-side malware

— Key-logger/malware captures password when
iInserted and sends to attacker

Server compromise

— Attacker compromises server, reads storage and
learns passwords

Defences/mitigations

Network eavesdropper:
« Encrypt traffic using TLS (will discuss later)

Client-side malware: hard to defend

* [ntrusion detection mechanisms — detect malware when
it is being inserted into the network

« Various security software (e.g., anti-virus)
 Use two-factor authentication

Mitigations for online-guessing
attacks

Rate-limiting
— Impose limit on number of passwords attempts

CAPTCHAs: to prevent automated password guessing

0%‘-31-}‘0?71?8 inmv

Type the two words: (]
ol Rre CAPTCHAV
o 1 Ok

Password requirements: length, capital letters,
characters, etc.

Mitigations for server compromise

* Suppose attacker steals the database at
the server including all password
information

» Storing passwords in plaintext makes
them easy to steal

* Further problem: users reuse passwords
at different sites!

Don’t store passwords in plaintext at server!

Hashing passwords

« Server stores hash(password) for each user using a
cryptographic hash function

— hash is a one-way function

username hash of password
Alice hash(Alice’s password)
Bob hash(Bob’s password)

* When Alice logs in with password w (and provides w
to server), server computes hash(w) and compares
to Alice’s record

Password hashing: problems

+ Offline password guessing

— Dictionary attack: attacker tries all passwords against each
hash(w)

— If D is dictionary size, n number of hashes passwords,
attack takes Dn

— Study shows that a dictionary of 220 passwords can guess
50% of passwords
* Amortized password hashing
— |ldea: One brute force scan for all/many hashes (D+n time)
— Build table (H(password), password) for all 220

passwords
— Crack 50% of passwords in this one pass

THE CYBERCRIME ECONOMY

More than 6 million
LinkedIn passwords
stolen

By David Goldman @ CNNMoneyTech June 7, 2012: 9:34 AM ET

ano Workl's Laisgest Profesiional Netwark | Linhedia

4alr |Ollw @ | AAllc # P‘y Fw S M+ [reg e isiadecom homeirt e b hama & (Qrca
[0 B Apple Valied! Comiple Migs TouTobe Wihigedis Mews (J47]v Pogulas v

> o 1 BB Reted Totatn Frinadinng .

' ' Emat Paavwmora * —orgt
Li m. san RO o

Be great at what you do.

by ~ Get started - it's free.
‘, ', y A RegAL o tiubt 45 173N 7 Mnites

LinkedIn was storing h(password)

Mas the number one hacked password, according to Rapid7. But many other
Redln users also picked passwords 4 "work" and "job" for example — that were

associated with the career site's content.

Religion was also a popular password tqpic — "god," "angel" and "jesus" glso made
the top 15. Number sequences such as§1234" and "12345" also made thqlist.

Prevent amortized guessing attack

Randomize hashes with salt

Server stores (salt, hash(password, salt)), salt is
random

Two equal passwords have different hashes now

Dictionary attack still possible, BUT need to do
one brute force attack per hash now, not one
brute force attack for many hashes at once

Attacks takes Dn time instead of D+n time

Salted hash example

username salt hash of password

Alice 235545235 hash(Alice’s password,
235545235)

Bob 678632523 hash(Bob’s password,
678632523)

Attacker tries to guess Alice’s password:

Computes table
‘aaaaaa’ | hash('aaaaaa’, 235545235),
‘aaaaab’ | hash('aaaaab’, 235545235),

‘.z”zzzzzz’ hash('zzzzzz’', 235545235)

This table is useless for Bob’s password because of
different salt

Increase security further

Would like to slow down attacker in doing a dictionary
attack

Use slow hashes = takes a while to compute the hash
Define

H(x) = hash(hash(hash(...hash(x))))
use with x = password || salt

Tension: time for user to authenticate & login vs
attacker time

If H is 1000 times slower and attack takes a day with
H, attack now takes 3 years with F

Conclusions

* Do not store passwords in cleartext

« Store them hashed with salts, slower hash functions
better

