
Symmetric-Key Encryption

CS 161: Computer Security
Prof. Raluca Ada Popa

Feb 7, 2019



Announcements

• Midterm 1 is Wednesday February 19, 8:00-
9:30pm

• Midterm 2 is Monday April 6, 8:30-10:00pm
• Homework 1 is due today
• Project 1 is out.  I encourage you to get started 

early.  We had to update the VM on Thursday – if 
you downloaded it before then, please delete and 
re-download.



Block cipher
A function E : {0, 1}k ×{0, 1}n → {0, 1}n. Once we fix 
the key K, we get 

EK : {0,1}n → {0,1}n defined by EK(M) = E(K,M).

Three properties:
• Correctness:

– EK(M) is a permutation (bijective/ one-to-one function)
• Efficiency
• Security



Block cipher security

For an unknown key K, EK “behaves” like 
a random permutation

For all polynomial-time attackers, for a 
randomly chosen key K, the attacker 
cannot distinguish EK from a random 
permutation



Block cipher: security game 
• Attacker is given two boxes, one for EK and one 

for a random permutation (also called “oracles”)
• Attacker does not know which is which (they 

were shuffled randomly)
• Attacker can give inputs to each box, look at the 

output, as many times as he/she desires
• Attacker must guess which is EK

input

output

output

input

??? Which is EK???
EK

rand 
perm



Security game

For all polynomial-time attackers, 

Pr[attacker wins game] <= ½+negl



Security
For an unknown key K, EK “behaves” like a 
random permutation

Q: If the attacker receives EK(x) and nothing else about x, can he 
determine x?
A: No. If he could, he could distinguish the block cipher from a 
random permutation

Similarly, if the attacker receives only EK(x1), EK(x2), …, EK(xn). The 
only information he sees is if any xi = xj but not their values

So block ciphers provide some confidentiality, but not enough 
for IND-CPA (because they have this deterministic leakage)



Advanced Encryption Standard (AES)

- Block cipher developed in 1998 by Joan Daemen and 
Vincent Rijmen

- Recommended by US National Institute for Standard 
and Technology (NIST)

- Block length n = 128bits, key length k = 256bits



AES ALGORITHM 

• 14 cycles of repetition 
for 256-bit keys.

AES slides, credit Kevin Orr

You don’t need 
to understand 
why AES is this 
way, just get a 
sense of its 
inner workings



Algorithm Steps - Sub bytes
• each byte in the state matrix is replaced with a SubByte using an 

8-bit substitution box
• bij = S(aij)



Shift Rows
• Cyclically shifts the bytes in each row by a 

certain offset
• The number of places each byte is shifted differs for 

each row



AES ALGORITHM 
• The key gets converted 

into round keys via a 
different procedure

• 14 cycles of repetition 
for 256-bit keys.

AES slides, credit Kevin Orr

You don’t need 
to understand 
why AES is this 
way, just get a 
sense of its 
inner workings



Why secure?

• Not provably secure but we assume it is
• By “educated” belief/assumption: it stood the 

test of time and of much cryptanalysis (field 
studying attacks on encryption schemes)

• Various techniques to boost confidence in its 
security

• If we were to have something provably 
secure, P is not NP



Uses
• Government Standard

– AES is standardized as Federal Information Processing 
Standard 197 (FIPS 197) by NIST

– To protect classified information 
• Industry

– SSL / TLS
– SSH
– WinZip
– BitLocker
– Mozilla Thunderbird
– Skype

Used as part of symmetric-key 
encryption or other crypto tools



Desired security: Indistinguishability 
under chosen plaintext attack (IND-CPA)

• Strong security definition
• Nothing leaks about the encrypted value 

other than its length



IND-CPA (Indistinguishability under chosen 
plaintext attack)

Challenger

K

M
C

EncK

M0, M1 random bit b
Enck(Mb)

M
EncK C

Here is my guess: b’

(must be 
same length)



IND-CPA

An encryption scheme is IND-CPA if
for all polynomial-time adversaries 

Pr[Adv wins game] <= ½ + negligible

Note that IND-CPA requires that the encryption 
scheme is randomized
(An encryption scheme is deterministic if it outputs the same 
ciphertext when encrypting the same plaintext; a randomized 
scheme does not have this property)



Are block ciphers IND-CPA?

Recall: EK : {0,1}n → {0,1}n is a 
permutation (bijective)



Q: Are block ciphers IND-CPA?

• A: No, because they are deterministic
• Here is an attacker that wins the IND-CPA 

game:
– Adv asks for encryptions of “bread”, receives Cbr

– Then, Adv provides (M0 = bread, M1 = honey) 
– Adv receives C
– If C=Cbr, Adv says bit was 0 (for “bread”), else Adv

says says bit was 1 (for “honey”)
– Chance of winning is 1
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Each block encrypted with a block cipher



Later (identical) message again encrypted 



Why block ciphers not enough 
for encryption by themselves?

• Can only encipher messages of a 
certain size

• Not IND-CPA (If message is encrypted 
twice, attacker knows it is the same 
message)



Use block ciphers to construct 
symmetric-key encryption

• Want two properties:
– IND-CPA security even when reusing the same 

key to encrypt many messages (unlike OTP)
– Can encrypt messages of any length

• Build symmetric key encryption on block ciphers:
• Can be used to encrypt long messages
• Wants to hide that same block is encrypted twice

• Uses block ciphers in certain modes of operation
• There are many block ciphers besides AES



Modes of operation

Chain block ciphers in certain modes of 
operation

– Invoke block cipher multiple times on 
inputs related to other blocks

Need some initial randomness IV
Q: Why? 
A: To prevent the encryption scheme from 
being deterministic

(initialization 
vector) 



Electronic Code Book (ECB)

• Split message M in blocks P1, P2, … where each 
plaintext block is as large as n, the block cipher 
input size
– For now assume that M is a multiple of n, but we will 

see how to pad if that is not the case
• Each block is a value which is substituted, like a 

codebook
• Each block is encoded independently of the other 

blocks 
𝐶𝑖 = 𝐸𝐾(𝑃𝑖)



P1 P2 P3

C1 C2 C3

ECB: Encryption 

break message M into P1|P2|…|Pm each of n bits (block cipher input 
size)

Enc(K, P1|P2|..|Pm) = (C1, C2,..., Cm)



P1 P2 P3

C1 C2 C3

ECB: Decryption

What is the problem with ECB?

Dec(K, (C1,C2,..,Cn)) = (P1, P2, .., Pm)



Q: Does this achieve IND-CPA?

A: No, attacker can tell if Pi=Pj
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Encrypted with ECB



Later (identical) message again encrypted with ECB



P1 P2 P3

C1 C2 C3

CBC: Encryption

Choose a random IV (it may not repeat for messages with same P1 , it is 
not secret and is included in the ciphertext)

Enc(K, P1|P2|..|Pm) = (IV, C1, C2,..., Cm)

Break message M into P1|P2|…|Pm



P1 P2 P3

C1 C2 C3

CBC: Decryption

Dec(K, (IV,C1,C2,..,Cm)) = (P1, P2, .., Pm)
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Encrypted with CBC



CBC

Popular, still widely used
Achieves IND-CPA

Slight caveat: sequential encryption, hard to 
parallelize

CTR mode gaining popularity



Counter mode (CTR)



CTR: Encryption
Enc(K, plaintext):  
• If n is the block size of the block cipher, split the 

plaintext in blocks of size n: P1, P2, P3,..
• Choose a random nonce
• Now compute:

• The final ciphertext is (nonce, C1, C2, C3)

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce does not repeat across 
different encryptions (choose it at random 
from large space)

One-time 
pad 
inspiration



Dec(K, ciphertext=[nonce,C1, C2, C3,…].):  
• Take nonce out of the ciphertext
• If n is the block size of the block cipher, split the ciphertext in 

blocks of size n: C1, C2, C3,..
• Now compute this:

• Output the plaintext as the concatenation of P1, P2, P3, ...

CTR: Decryption

Note, CTR decryption uses block cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3



Would you like me to explain 
CTR one more time?
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Encrypted with CBC



Speed: Both modes require the same amount of 
computation, but CTR is parallelizable for encryption as 
well (CBC was parallelizable for decryption but not for 
encryption)

Security: If no reuse of nonce/IV, both are IND-CPA. 

CBC vs CTR



Bad padding: 

If messages might not be multiple of n, the block 
cipher length, we pad the message before encryption 
and unpad after decryption.

Padding

n bits

message 00000000000

Q: Why bad?

A: When unpadding, it 
is not clear which 0s 
belong to the padding 
vs the message

Good padding: 

n bits

message 10000000000

If the message is 
exactly n bits long, still 
pad by adding another 
n bits.



Pseudorandom generator
(PRG)



Pseudorandom Generator 
(PRG)

• Given a seed, it outputs a sequence of 
random bits

PRG(seed) -> random bits
• It can output arbitrarily many random 

bits



PRG security
• Can PRG(K) be truly random?

No.  Consider key length |K|=k.  Have 2k

possible initial states of PRG. Deterministic 
from then on. There are more random 
states.   

• A secure PRG suffices to “look” random 
(“pseudo”) to an attacker (no attacker can 
distinguish it from a random sequence)



Example of PRG: using block 
cipher in CTR mode

If you want m random bits, and a block 
cipher with Ek has n bits, apply the block 
cipher m/n times and concatenate the 
result:

PRG(K | IV) = Ek(IV|1) | Ek(IV| 2) | Ek(IV|3) 
… Ek(IV| ceil(m/n)),   where | is concatenation



Application of PRG: Stream 
ciphers

• Another way to construct encryption 
schemes 

• Similar in spirit to one-time pad: it XORs 
the plaintext with some random bits

• But random bits are not the key (as in 
one-time pad) but are output of a 
pseudorandom generator PRG



Application of PRG: Stream cipher

Enc(K, M):
– Choose a random value IV
– C = PRG(K | IV) XOR M
– Output (IV, C)

Q: How decrypt?
A: Compute PRG(K | IV) and XOR with ciphertext C
Q: What is advantage over OTP?
A: Can encrypt any message length because PRG 
can produce any number of random bits, and 
multiple times because IV is chosen at random in 
Enc



Summary

• Desirable security: IND-CPA
• Block ciphers have weaker security than 

IND-CPA 
• Block ciphers can be used to build IND-

CPA secure encryption schemes by 
chaining in careful ways

• Stream ciphers provide another way to 
encrypt, inspired from one-time pads


