Symmetric-Key Encryption

CS 161: Computer Security
Prof. Raluca Ada Popa

Announcements

Midterm 1 is Wednesday February 19, 8:00-
9:30pm

Midterm 2 is Monday April 6, 8:30-10:00pm
Homework 1 is due today

Project 1 Is out. | encourage you to get started
early. We had to update the VM on Thursday — if

you downloaded it before then, please delete and
re-download.

Block cipher

A function E : {0, 1}* x{0, 1} — {0, 1}". Once we fix
the key K, we get

E, : {0,1}" — {0,1}" defined by Ex(M) = E(K,M).

Three properties:

* Correctness:

— Ex(M) is a permutation (bijective/ one-to-one function)
 Efficiency
* Security

Block cipher security

For an unknown key K, E, “behaves” like
a random permutation

For all polynomial-time attackers, for a
randomly chosen key K, the attacker
cannot distinguish Ex from a random
permutation

Block cipher: security game

 Attacker is given two boxes, one for Ex and one
for a random permutation (also called “oracles”)

« Attacker does not know which is which (they
were shuffled randomly)

« Attacker can give inputs to each box, look at the
output, as many times as he/she desires

« Attacker must guess which is Ex

22? Which is E,?2?

input

— 7 R
output K

input
— | rand
output
«— | PpPerm

Security game

For all polynomial-time attackers,

Pr[attacker wins game] <= 2+neg|

Security

For an unknown key K, Ex “behaves” like a
random permutation

V7

Q: If the attacker receives Ex(x) and nothing else about x, can he
determine x?

A: No. If he could, he could distinguish the block cipher from a
random permutation

Similarly, if the attacker receives only Ex(X4), Ex(X5), ..., Ex(X,). The
only information he sees is if any x; = x; but not their values

So block ciphers provide some confidentiality, but not enough
for IND-CPA (because they have this deterministic leakage)

Advanced Encryption Standard (AES)

- Block cipher developed in 1998 by Joan Daemen and
Vincent Rijmen

- Recommended by US National Institute for Standard
and Technology (NIST)

- Block length n = 128bits, key length k = 256bits

ENCRYPTION

"'ENCRYPTIONROUND %

LAST ROUND

.,
.......

AES ALGORITHM

PLAINTEXT

l

AddRoundKey

SubBytes

v

ShiftRows

v

MixColumns

v

AddRoundKey

SubBytes

Y

ShiftRows

Y

AddRoundKey

.

H

H

.

.

N

H

: ;

H N

< -

. .

L .
. O
. -
.......................................

CIPHERTEXT

X Nr-1

DECRYPTION

LAST ROUND

.,

o

.,

PLAINTEXT

--

o

N *,

s .

< -
.

e .

. .
.

AddRoundKey

T

InvSubBytes

f

InvShiftRows

0

3

AddRoundKey

f

InvMixColumns

f

InvSubBytes

f

InvShiftRows

AddRoundKey

T

CIPHERTEXT

X Nr-1

14 cycles of repetition
for 256-bit keys.

You don’t need
to understand
why AES is this
way, Jjust get a
sense of 1its

inner workings

AES slides, credit Kevin Orr

Algorithm Steps - Sub bytes

« each byte in the state matrix is replaced with a SubByte using an
8-bit substitution box

* bU = S(a,j)

Shift Rows

Cyclically shifts the bytes in each row by a
certain offset

The number of places each byte is shifted differs for
each row

ENCRYPTION

"'ENCRYPTIONROUND %

LAST ROUND

.,
.......

AES ALGORITHM

PLAINTEXT

l

AddRoundKey

SubBytes

v

ShiftRows

v

MixColumns

v

AddRoundKey

SubBytes

Y

ShiftRows

Y

AddRoundKey

.

H

H

.

.

N

H

: ;

H N

< -

. .

L .
. O
. -
.......................................

CIPHERTEXT

X Nr-1

DECRYPTION

LAST ROUND

.,

o

.,

PLAINTEXT

..

- 0
.. e
. .
H H

H
s -
.
H

AddRoundKey

T

InvSubBytes

T

InvShiftRows

0

3

AddRoundKey

T

InvMixColumns

T

InvSubBytes

T

InvShiftRows

AddRoundKey

T

CIPHERTEXT

X Nr-1

The key gets converted
into round keys via a
different procedure

14 cycles of repetition
for 256-bit keys.

You don’t need
to understand
why AES is this
way, Jjust get a
sense of 1its

inner workings

AES slides, credit Kevin Orr

Why secure?

Not provably secure but we assume it is

By “educated” belief/assumption: it stood the
test of time and of much cryptanalysis (field
studying attacks on encryption schemes)

Various techniques to boost confidence in its
security

If we were to have something provably
secure, P is not NP

Uses

e Government Standard

— AES 1s standardized as Federal Information Processing
Standard 197 (FIPS 197) by NIST

— To protect classified information
e Industry

— SSL/TLS

— SSH

— WinZip

— BitLocker

— Mozilla Thunderbird

— Skype

Used as part of symmetric-key
encryption or other crypto tools

Desired security: Indistinguishability
under chosen plaintext attack (IND-CPA)

» Strong security definition

* Nothing leaks about the encrypted value
other than its length

IND-CPA (Indistinguishability under chosen
plaintext attack)

Challenger
K

Endg v

ncx e

random bitb - Mo, M1 e lngtn
" Enc(Mp)

Endg v
b

Here is my guess: b’

IND-CPA

An encryption scheme is IND-CPA if
for all polynomial-time adversaries

Pr[Adv wins game] <= 2 + negligible

Note that IND-CPA requires that the encryption

scheme is randomized

(An encryption scheme is deterministic if it outputs the same
ciphertext when encrypting the same plaintext; a randomized
scheme does not have this property)

Are block ciphers IND-CPA?

Recall: Ex : {0,1}" — {0,1}"is a
permutation (bijective)

Q: Are block ciphers IND-CPA?

* A: No, because they are deterministic

* Here is an attacker that wins the IND-CPA
game:
— Adv asks for encryptions of “bread”, receives C,,
— Then, Adv provides (M, = bread, M, = honey)
— Adv receives C

— If C=C,,, Adv says bit was 0 (for “bread”), else Adv
says says bit was 1 (for “honey”)

— Chance of winning is 1

Original image

Each block encrypted with a block cipher

Later (identical) message again encrypted

Why block ciphers not enough
for encryption by themselves?

« Can only encipher messages of a
certain size

* Not IND-CPA (If message is encrypted
twice, attacker knows it is the same
message)

Use block ciphers to construct
symmetric-key encryption

Want two properties:

— IND-CPA security even when reusing the same
key to encrypt many messages (unlike OTP)

— Can encrypt messages of any length

Build symmetric key encryption on block ciphers:

« Can be used to encrypt long messages
 Wants to hide that same block is encrypted twice

Uses block ciphers in certain modes of operation
There are many block ciphers besides AES

Modes of operation

Chain block ciphers in certain modes of

operation

— Invoke block cipher multiple times on
iInputs related to other blocks
(initialization

Need some initial randomness IV vecton
Q: Why?

A: To prevent the encryption scheme from
being deterministic

Electronic Code Book (ECB)

« Split message M in blocks P4, P,, ... where each
plaintext block is as large as n, the block cipher
iInput size
— For now assume that M is a multiple of n, but we will

see how to pad if that is not the case

« Each block is a value which is substituted, like a
codebook

« Each block is encoded independently of the other
blocks
Ci — EK(Pl)

ECB: Encryption

break message M into P,|P,|...|P,, each of n bits (block cipher input
size)

P P> P3
Plaintext Plaintext Plaintext
(ITTTTTTT] (TTTTTTT LTI
v v v
Block Cipher Block Cipher Block Cipher
Key —= Encryption Key —= | Encryption Key ——= Encryption
v v v
'LI:LLI'C1 (TTTTTT] C2 ‘11111111C3
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

Enc(K, P;|P,|..|P,) = (Cy, Cp, ..., Cp)

ECB: Decryption

Ciphertext Ciphertext Ciphertext
.III;IIILC1 IIIIIIZIICZ [(TTTTTTT]
| v | Y | | v
Block Cipher Block Cipher Block Cipher
Key —=| Decryption Key —= | Decryption Key —=| Decryption
A\ \J A\
CITTTTTTIT] [(ITTTTTT] I N |
P1 Plaintext F)2 Plaintext F)3 Plaintex

Electronic Codebook (ECB) mode decryption

Dec (K, (Cc,,C,,..,C)) = (py, P,, .., P.)

What is the problem with ECB?

Q: Does this achieve IND-CPA?

A: No, attacker can tell if P=P,

Original image

Encrypted with ECB

Later (identical) message again encrypted with ECB

CBC: Encryption

Break message M into P4|P,|...|P,

Choose a random IV (it may not repeat for messages with same P, , it is
not secret and is included in the ciphertext)

P Plaintext P Plaintext P Plaintext
| oo E [TITL] S | I

Initialization Vector (IV)
[TTTT1 - g o) - &8

\J Al A

Block Cipher Block Cipher Block Cipher
Key —=| Encryption Key —= Encryption Key —=| Encryption
v v Y
[TTTTTT] (ITTTTTTI [TTTTTT]
C1 Ciphertext C2 Ciphertext C3 Ciphertext

Cipher Block Chaining (CBC) mode encryption

Enc(K, P,|P,|..|P,) = (IV, C;, C,,..., C.)

CBC: Decryption

Cy C, Cs

Initialization Vector (I1V) Ciphertext Ciphertext Ciphertext
(ITTTTTIT] (LTTTTTT] LIITTTTTT] (ITTTTTTT]
v _ v] . v
Block Cipher Block Cipher Block Cipher
Key —= | Decryption Key —= | Decryption Key —= Decryption
! . v
EEEEEEEE CITTTITTI] CITTTTTT]
P1 Plaintext P2 Plaintex F)3 Plaintex

Cipher Block Chaining (CBC) mode decryption

Dec (K, (IV,C;,C,,..,C.)) = (P,, P,, .., P.)

Original image

Encrypted with CBC

CBC

Popular, still widely used
Achieves IND-CPA

Slight caveat: sequential encryption, hard to
parallelize

CTR mode gaining popularity

Counter mode (CTR)

CTR: Encryption

Enc(K, plaintext):
* |f nis the block size of the block cipher, split the
plaintext in blocks of size n: P4, P,, P3,..

« Choose a random nonce (Nonce = Same as V)
e« Now Compute' Important that nonce does not repeat across
' different encryptions (choose it at random

from large space)

Nonce Counter Nonce Counter Nonce Counter
¢c59bcf35... 00000000 ¢59bcf35... 00000001 ¢c59bcf35... 00000002

l | [L]] [] [L]
v v v

Key = Block Cipher Key = | Block Cipher Key = Block Cipher
Encryption Encryption Encryption One-time

P»| P!ai-nt-e_x't . | P2 P.ai'n.tex_t_ - P3 f’!a_i-nte'x't__ - | pad_ .
[TTTTTITITTTTTT] ‘ COITTTITTITTTTTd ‘ [TITITITTITTITTT] ‘ |nsp|rat|on
T T TOIIIIOD aasaasEmanaEs

-C'iphe-rtéxt C VCiphertéxt C C-iphertexf C
1 2 3

Counter (CTR) mode encryption
« The final ciphertext is (nonce, C,, C,, C;)

CTR: Decryption

Dec(K, ciphertext=[nonce,C,, C,, C,,...].):

« Take nonce out of the ciphertext

* If nis the block size of the block cipher, split the ciphertext in
blocks of size n: C4, C,, Cs,..

 Now compute this:

Nonce Counter Nonce Counter Nonce Counter
c59bcf35... 00000000 c59bcf35... 00000001 c59bcf35... 00000002
T IIITIT CITTITITITTITTT COITITTTTITTITTd
\j \J v
Key = Block Cipher Key = Block Cipher Key = Block Cipher
Encryption Encryption Encryption
Ciphertext - | Ciphertext - Ciphertext - b
C1 ANRENERERERNAR C2,ﬁi]liliiiﬁll [C3.IIIIII ARRENAN!
\j \J v
ITTTTITITTITTOT ITTTTTTITTITdd [TITTTTITTTTTTT
Plaintext Plaintext Plaintext
P, P, P,

Counter (CTR) mode decryption

« Output the plaintext as the concatenation of P,, P,, P4, ...
Note, CTR decryption uses block cipher’s encryption, not decryption

Would you like me to explain
CTR one more time?

Original image

Encrypted with CBC

CBC vs CTR

Security: If no reuse of nonce/lV, both are IND-CPA.

Speed: Both modes require the same amount of
computation, but CTR is parallelizable for encryption as
well (CBC was parallelizable for decryption but not for
encryption)

Padding

If messages might not be multiple of n, the block
cipher length, we pad the message before encryption
and unpad after decryption.

Bad padding: Q: Why bad?
A: When unpadding, it
message 00000000000 is not clear which Os
n bits belong to the padding
vs the message
Good padding: If the message is

exactly n bits long, still
message 10000000000 pad by adding another

Pseudorandom generator
(PRG)

Pseudorandom Generator
(PRG)

* Given a seed, it outputs a sequence of
random bits

PRG(seed) -> random bits

* |t can output arbitrarily many random
bits

PRG security
« Can PRG(K) be truly random?

No. Consider key length |K|=k. Have 2k
possible initial states of PRG. Deterministic
from then on. There are more random
states.

* A secure PRG suffices to “look™ random
(“pseudo”) to an attacker (no attacker can
distinguish it from a random sequence)

Example of PRG: using block
cipher in CTR mode

If you want m random bits, and a block
cipher with E, has n bits, apply the block
cipher m/n times and concatenate the
result:

PRG(K | IV) = E (IV|1) | E.(IV] 2) | E(IV]|3)
... E (IV] ceil(m/n)), where | is concatenation

Application of PRG: Stream
ciphers

* Another way to construct encryption
schemes

« Similar in spirit to one-time pad: it XORs
the plaintext with some random bits

« But random bits are not the key (as in

one-time pad) but are output of a
pseudorandom generator PRG

Application of PRG: Stream cipher

Enc(K, M):
— Choose a random value IV
— C=PRG(K|IV) XOR M
— Output (IV, C)
Q: How decrypt?
A: Compute PRG(K | IV) and XOR with ciphertext C

Q: What is advantage over OTP?

A: Can encrypt any message length because PRG
can produce any number of random bits, and
multiple times because |V is chosen at random in
Enc

Summary

Desirable security: IND-CPA

Block ciphers have weaker security than
IND-CPA

Block ciphers can be used to build IND-
CPA secure encryption schemes by
chaining in careful ways

Stream ciphers provide another way to
encrypt, inspired from one-time pads

