
Symmetric-Key Encryption

CS 161: Computer Security
Prof. Raluca Ada Popa

Feb 7, 2019

Announcements

• Midterm 1 is Wednesday February 19, 8:00-
9:30pm

• Midterm 2 is Monday April 6, 8:30-10:00pm
• Homework 1 is due today
• Project 1 is out. I encourage you to get started

early. We had to update the VM on Thursday – if
you downloaded it before then, please delete and
re-download.

Block cipher
A function E : {0, 1}k ×{0, 1}n → {0, 1}n. Once we fix
the key K, we get

EK : {0,1}n → {0,1}n defined by EK(M) = E(K,M).

Three properties:
• Correctness:

– EK(M) is a permutation (bijective/ one-to-one function)
• Efficiency
• Security

Block cipher security

For an unknown key K, EK “behaves” like
a random permutation

For all polynomial-time attackers, for a
randomly chosen key K, the attacker
cannot distinguish EK from a random
permutation

Block cipher: security game
• Attacker is given two boxes, one for EK and one

for a random permutation (also called “oracles”)
• Attacker does not know which is which (they

were shuffled randomly)
• Attacker can give inputs to each box, look at the

output, as many times as he/she desires
• Attacker must guess which is EK

input

output

output

input

??? Which is EK???
EK

rand
perm

Security game

For all polynomial-time attackers,

Pr[attacker wins game] <= ½+negl

Security
For an unknown key K, EK “behaves” like a
random permutation

Q: If the attacker receives EK(x) and nothing else about x, can he
determine x?
A: No. If he could, he could distinguish the block cipher from a
random permutation

Similarly, if the attacker receives only EK(x1), EK(x2), …, EK(xn). The
only information he sees is if any xi = xj but not their values

So block ciphers provide some confidentiality, but not enough
for IND-CPA (because they have this deterministic leakage)

Advanced Encryption Standard (AES)

- Block cipher developed in 1998 by Joan Daemen and
Vincent Rijmen

- Recommended by US National Institute for Standard
and Technology (NIST)

- Block length n = 128bits, key length k = 256bits

AES ALGORITHM

• 14 cycles of repetition
for 256-bit keys.

AES slides, credit Kevin Orr

You don’t need
to understand
why AES is this
way, just get a
sense of its
inner workings

Algorithm Steps - Sub bytes
• each byte in the state matrix is replaced with a SubByte using an

8-bit substitution box
• bij = S(aij)

Shift Rows
• Cyclically shifts the bytes in each row by a

certain offset
• The number of places each byte is shifted differs for

each row

AES ALGORITHM
• The key gets converted

into round keys via a
different procedure

• 14 cycles of repetition
for 256-bit keys.

AES slides, credit Kevin Orr

You don’t need
to understand
why AES is this
way, just get a
sense of its
inner workings

Why secure?

• Not provably secure but we assume it is
• By “educated” belief/assumption: it stood the

test of time and of much cryptanalysis (field
studying attacks on encryption schemes)

• Various techniques to boost confidence in its
security

• If we were to have something provably
secure, P is not NP

Uses
• Government Standard

– AES is standardized as Federal Information Processing
Standard 197 (FIPS 197) by NIST

– To protect classified information
• Industry

– SSL / TLS
– SSH
– WinZip
– BitLocker
– Mozilla Thunderbird
– Skype

Used as part of symmetric-key
encryption or other crypto tools

Desired security: Indistinguishability
under chosen plaintext attack (IND-CPA)

• Strong security definition
• Nothing leaks about the encrypted value

other than its length

IND-CPA (Indistinguishability under chosen
plaintext attack)

Challenger

K

M
C

EncK

M0, M1 random bit b
Enck(Mb)

M
EncK C

Here is my guess: b’

(must be
same length)

IND-CPA

An encryption scheme is IND-CPA if
for all polynomial-time adversaries

Pr[Adv wins game] <= ½ + negligible

Note that IND-CPA requires that the encryption
scheme is randomized
(An encryption scheme is deterministic if it outputs the same
ciphertext when encrypting the same plaintext; a randomized
scheme does not have this property)

Are block ciphers IND-CPA?

Recall: EK : {0,1}n → {0,1}n is a
permutation (bijective)

Q: Are block ciphers IND-CPA?

• A: No, because they are deterministic
• Here is an attacker that wins the IND-CPA

game:
– Adv asks for encryptions of “bread”, receives Cbr

– Then, Adv provides (M0 = bread, M1 = honey)
– Adv receives C
– If C=Cbr, Adv says bit was 0 (for “bread”), else Adv

says says bit was 1 (for “honey”)
– Chance of winning is 1

Original image

Each block encrypted with a block cipher

Later (identical) message again encrypted

Why block ciphers not enough
for encryption by themselves?

• Can only encipher messages of a
certain size

• Not IND-CPA (If message is encrypted
twice, attacker knows it is the same
message)

Use block ciphers to construct
symmetric-key encryption

• Want two properties:
– IND-CPA security even when reusing the same

key to encrypt many messages (unlike OTP)
– Can encrypt messages of any length

• Build symmetric key encryption on block ciphers:
• Can be used to encrypt long messages
• Wants to hide that same block is encrypted twice

• Uses block ciphers in certain modes of operation
• There are many block ciphers besides AES

Modes of operation

Chain block ciphers in certain modes of
operation

– Invoke block cipher multiple times on
inputs related to other blocks

Need some initial randomness IV
Q: Why?
A: To prevent the encryption scheme from
being deterministic

(initialization
vector)

Electronic Code Book (ECB)

• Split message M in blocks P1, P2, … where each
plaintext block is as large as n, the block cipher
input size
– For now assume that M is a multiple of n, but we will

see how to pad if that is not the case
• Each block is a value which is substituted, like a

codebook
• Each block is encoded independently of the other

blocks
𝐶𝑖 = 𝐸𝐾(𝑃𝑖)

P1 P2 P3

C1 C2 C3

ECB: Encryption

break message M into P1|P2|…|Pm each of n bits (block cipher input
size)

Enc(K, P1|P2|..|Pm) = (C1, C2,..., Cm)

P1 P2 P3

C1 C2 C3

ECB: Decryption

What is the problem with ECB?

Dec(K, (C1,C2,..,Cn)) = (P1, P2, .., Pm)

Q: Does this achieve IND-CPA?

A: No, attacker can tell if Pi=Pj

Original image

Encrypted with ECB

Later (identical) message again encrypted with ECB

P1 P2 P3

C1 C2 C3

CBC: Encryption

Choose a random IV (it may not repeat for messages with same P1 , it is
not secret and is included in the ciphertext)

Enc(K, P1|P2|..|Pm) = (IV, C1, C2,..., Cm)

Break message M into P1|P2|…|Pm

P1 P2 P3

C1 C2 C3

CBC: Decryption

Dec(K, (IV,C1,C2,..,Cm)) = (P1, P2, .., Pm)

Original image

Encrypted with CBC

CBC

Popular, still widely used
Achieves IND-CPA

Slight caveat: sequential encryption, hard to
parallelize

CTR mode gaining popularity

Counter mode (CTR)

CTR: Encryption
Enc(K, plaintext):
• If n is the block size of the block cipher, split the

plaintext in blocks of size n: P1, P2, P3,..
• Choose a random nonce
• Now compute:

• The final ciphertext is (nonce, C1, C2, C3)

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce does not repeat across
different encryptions (choose it at random
from large space)

One-time
pad
inspiration

Dec(K, ciphertext=[nonce,C1, C2, C3,…].):
• Take nonce out of the ciphertext
• If n is the block size of the block cipher, split the ciphertext in

blocks of size n: C1, C2, C3,..
• Now compute this:

• Output the plaintext as the concatenation of P1, P2, P3, ...

CTR: Decryption

Note, CTR decryption uses block cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3

Would you like me to explain
CTR one more time?

Original image

Encrypted with CBC

Speed: Both modes require the same amount of
computation, but CTR is parallelizable for encryption as
well (CBC was parallelizable for decryption but not for
encryption)

Security: If no reuse of nonce/IV, both are IND-CPA.

CBC vs CTR

Bad padding:

If messages might not be multiple of n, the block
cipher length, we pad the message before encryption
and unpad after decryption.

Padding

n bits

message 00000000000

Q: Why bad?

A: When unpadding, it
is not clear which 0s
belong to the padding
vs the message

Good padding:

n bits

message 10000000000

If the message is
exactly n bits long, still
pad by adding another
n bits.

Pseudorandom generator
(PRG)

Pseudorandom Generator
(PRG)

• Given a seed, it outputs a sequence of
random bits

PRG(seed) -> random bits
• It can output arbitrarily many random

bits

PRG security
• Can PRG(K) be truly random?

No. Consider key length |K|=k. Have 2k

possible initial states of PRG. Deterministic
from then on. There are more random
states.

• A secure PRG suffices to “look” random
(“pseudo”) to an attacker (no attacker can
distinguish it from a random sequence)

Example of PRG: using block
cipher in CTR mode

If you want m random bits, and a block
cipher with Ek has n bits, apply the block
cipher m/n times and concatenate the
result:

PRG(K | IV) = Ek(IV|1) | Ek(IV| 2) | Ek(IV|3)
… Ek(IV| ceil(m/n)), where | is concatenation

Application of PRG: Stream
ciphers

• Another way to construct encryption
schemes

• Similar in spirit to one-time pad: it XORs
the plaintext with some random bits

• But random bits are not the key (as in
one-time pad) but are output of a
pseudorandom generator PRG

Application of PRG: Stream cipher

Enc(K, M):
– Choose a random value IV
– C = PRG(K | IV) XOR M
– Output (IV, C)

Q: How decrypt?
A: Compute PRG(K | IV) and XOR with ciphertext C
Q: What is advantage over OTP?
A: Can encrypt any message length because PRG
can produce any number of random bits, and
multiple times because IV is chosen at random in
Enc

Summary

• Desirable security: IND-CPA
• Block ciphers have weaker security than

IND-CPA
• Block ciphers can be used to build IND-

CPA secure encryption schemes by
chaining in careful ways

• Stream ciphers provide another way to
encrypt, inspired from one-time pads

