Lecture 6:
Software Security

https://cs161.org



Announcements

2222222

- Midterm 1 is Wednesday February 19, 8-9:30pm

Computer Sc




Attack: Guessing the Canary

Computer Science 161 Spring 2020

- On 32-bit x86, the canary is a 32-bit value
* |tis 64 bits on x86-64

- One byte of the canary is always 0x00

* Since some buffer overflows can’t include null bytes;:
e.g. If the vulnerability is in a bad call to strcpy

- This means you can (possibly) brute-force the canary
* Need to try about 224 times or so



Non-Executable Pages (aka DEP, WAX)

Computer Science 161 Spring 2020 Popa and Wagner

- Each page of memory has separate access permissions:
* R ->Can Read, W -> Can Write, X -> Can Execute

- Defense: mark writeable pages as non-executable
* Now you can’t write code to the stack or heap

» No noticeable performance impact



Attacks on Non-Executable Pages

Computer Science 161 Spring 2020

- Return into libc: set up the stack and “return” to exec|)

 Qverwrite stuff above saved return address with a “fake call stack”, overwrite
saved return address to point to the beginning of exec() function

* Especially easy on x86 since arguments are passed on the stack

- Return Oriented Programming









Return Oriented Programming

Computer Science 161 Fall 2019

- |dea: chain together “return-to-libc” idea many times

* Find a set of short code fragments (gadgets) that when called in sequence execute the
desired function

* |nject into memory a sequence of saved "return addresses” that will invoke them
 Sample gadget: add one to EAX, then return

* ROP compiller
* Find enough gadgets scattered around existing code that they’re Turing-complete
 Compile your malicious payload to a sequence of these gadgets

 Tools democratize things for attackers:

* Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency tool and
tomorrow's Script Kiddie download



Address Space Layout Randomization

Computer Science 161 Fall 2019

- Randomly relocate everything in memory

* Every library, the start of the stack & heap, etc...
* With 64-bit architecture you have lots of entropy

 32-bit? Hard to get enough entropy, as segments need to be page-aligned
(.e., start at a 4096-byte boundary), so attacker might be able to brute-force it



ASLR Efficiency

Computer Science 161 Fall 2019

« Performance overhead is close to 0%

* Everything needs to be relocatable anyway:
Modern systems use relocatable code and dynamically load all the desired
libraries

|10



ASLR + DEP

Computer Science 161 Fall 2019

- ALSR + DEP make many exploits harder

* Typically, need two vulnerabilities: both a buffer overrun and a separate
information leak (such as a way to find the address of a function)

 |Information leak needed to fill in the return addresses for ROP chain



Defense In Depth in ALSR + DEP:
Attacker Requirements

Computer Science 161 Fall 2019

» Attacker first needs to discover a way to read memory

* Just a single pointer to a known library will do, however

The return address off the stack is often a great candidate
Or a vtable pointer for an object of a known type

- Armed with this, the attacker now can create a ROP chain

* Since the attacker has a copy of the library of their own and has already
passed it through a ROP compiler, it just needs to know the starting point for
the library

- Now the attacker needs to write memory
* Writes the ROP chain and overwrites a control flow pointer

12



Defenses-In-Depth in Practice

Computer Science 161 Fall 2019

- Apple iIOS uses ASLR in the kernel and userspace, WAX whenever possible
* All applications are sandboxed to limit their damage: The kernel is the TCB

- The "Trident" exploit was used by a spyware vendor, the NSO group, to exploit
IPhones of targets

» So to remotely exploit an iPhone, the NSO group's exploit had to...

* Exploit Safari with a memory corruption vulnerability
Gains remote code execution within the sandbox: write to a R/W/X page as part of the JavaScript JIT

* Exploit a vulnerability to read a section of the kernel stack
Saved return address & knowing which function called breaks the ASLR

* Exploit a vulnerability in the kernel to enable code execution

» Full detalls:
https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-technical-
detalls.pdf

13



Safari Exploit:
More Detalls

Computer Science 161 Fall 2019

- Basic idea: can corrupt a JavaScript object (due to interaction
with garbage collector) to trigger a use-after-free issue

» Attacker’s JavaScript has access to both objects that share the same memory:

Newly allocated object is an array of integers
Old object changes the length of the array to be OxFFFFFFFF

- Now attacker has a "read/write" primitive

 The array can see a huge fraction of the memory space
First thing, find out the offset of the array itself, then any other magic numbers needed

» Turning It into execution

* Take another JavaScript object that will get compiled (the "Just In Time" compiler)...

* That object's code pointer will point into space that is writeable and executable
14



Fuzz testing

Computer Science 161 Fall 2019

- Automated testing is surprisingly effective at finding
memory-safety vulnerabillities

- How do we tell when we’ve found a problem? Program
crashes

- How do we generate test cases?
 Random testing: generate random Iinputs
* Mutation testing: start from valid inputs, randomly flip bits in them

* (Coverage-guided mutation testing: start from valid input, flip bits, measure
coverage of each modification, keep any inputs that covered new code

15



Why does software have vulnerabilities?

Computer Science 161 Fall 2019

» Programmers are humans.
And humans make mistakes.
e Use tools

- Programmers often aren’t security-aware.
* |Learn about common types of security flaws.

- Programming languages aren’'t designed well
for security.
* Use better languages (Java, Python, ...).

Huge Mistake

16



Some Approaches for
Building Secure Software/Systems

Computer Science 161 Fall 2019

* Run-time checks
* Automatic bounds-checking (overhead)

- Code hardening

* Address randomization
* Non-executable stack, heap

» Monitor code for run-time misbehavior
* E.g., illegal calling sequences
* But again: what do you if detected?

|7



Approaches for Secure Software, con’t

Computer Science 161 Fall 2019

* Program in checks / “defensive programming”
* E.g., check for null pointer even though sure pointer will be valid

- Use safe libraries
 E.g. strlcpy, not strcpy; snprintf, not sprintf

- Bug-finding tools
- Code review

|18



Approaches for Secure Software, con’t

Computer Science 161 Fall 2019

- Use a memory-safe language
* E.g., Java, Python, C#, Go, Rust

- Defensive validation of untrusted input
* Constrain how untrusted sources can interact with the system

- Contain potential damage
* Privilege separation, run system components in least-privilege jails or VMs

19



