Lecture 4-:
Memory Safety

https://cs161.org

Announcements

- Homework O due Friday.

- Expect Homework 1 to be released later this week.

Computer Science 161 Spring 2020 Popa and Wagner

Buffer Overflows

0xC0000000 <%___]

To previous saved
frame pointer

arguments

return address

saved frame pointer

exception handlers

To the point at which

Jxa0bbonoo local variables this function was called
callee saved registers
static data
segment
text segment
(program)
0x08048000

0x00000000

void safe () {
char buf[64];

fgets (buf, 64, stdin);

void safer () {
char buf[64];

fgets (buf, sizeof (buf), stdin);

void vulnerable (ant len, char *data) {

char buf[64];
if (len > 64)
return;
memcpy (buf, data, len);

}

memcpy (void *sl, const wvoid *s2, @ n);

void safe(size t len, char *data) {
char buf[64];
1f (len > 64)

return;
memcpy (buf, data, 1len);

}

void f(size t len, char *data) {
char *buf = malloc(len+2) ;
1f (buf == NULL) return;

memcpy (buf, data, 1len);
buf[len] = '\n’';
buf[len+l] = '\0';

}

Is it safe”? Talk to your partner.

Broward Vote-Counting Blunder Changes Amendment Result

POSTED: 1:34 pm EST November 4, 2004

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, it turns out the
amendment passed.

Tsoltware 18 not geared to count more than 32,000 votes 1n a
precinct. So what happens when it gets to 32,000 is the software starts | , :
sQunting backward,” said Broward County Mayor Ilene Lieberman, Broward County Mayor

".0.

Ilene Lieberman says
voting counting error 1$ an
"embarrassing mistake."

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, 1t’s clear amendment 4 passed.

Computer Science 161 Spring 2020 Popa and Wagner

Memory Safety

void wvulnerable () {
char buf[64];
if (fgets(buf, 64,

retirni

}

stdin)

NULL)

12

printf ("you scored %d\n", score);

13

printf(“you scored %\n”, score);

printf()

score

0x8048464

rip

\0(\n| d

% d e

0x8048464

| 4

printf ("a %s costs $%d\n", item, price);

15

printf("a % costs $%\n", item, price);|

>

>

>

printf()

price

item

0x8048464

rip

\O(\n| d | %

$ s | t
s | o | ¢
s | % a

0x8048464

16

Fun With print£f format strings...

Computer Science 1 61 Spring 2020

printf ("10 C_

|7

printf(“100% dude!”) ;

printf()

sfp

???

0x8048464

rip
sfp

%0 (0 (1

0x8048464

|18

More Fun With print£f format strings...

Computer Science 161 Spring 2020

printf ("100% dude!");

= prints value 4 bytes above retaddr as integer
printf ("100% sir!'");

= prints bytes pointed to by that stack entry

up through first NUL
printf("sd 3sd 3sd sd ...");

= prints series of stack entries as integers
printf ("3sd 3s");

=> prints value 8 bytes above retaddr plus bytes

pointed to by preceding stack entry
printf ("100% nuke’'m!") ;

%n writes the number of characters printed so far
into the corresponding format argument.

int report cost(int item num, int price)
int colon offset;
printf("item %d:%n $%d\n", item num,
&colon offset, price);
return colon offset;

}

report cost (3, 22) prints "item 3: $22"
and returns the value 7

report cost (987, 5) prints "item 987: $5"
and returns the value 9

{

20

Fun With print£f format strings...

Computer Science 161 Spring 2020

printf ("100% dude!");

= prints value 4 bytes above retaddr as integer
printf ("100% sir!");

= prints bytes pointed to by that stack entry

up through first NUL
printf("3d sd 3d 3sd ...");

= prints series of stack entries as integers
printf ("3sd 3s");

=> prints value 8 bytes above retaddr plus bytes

pointed to by preceding stack entry
printf ("100% nuke'm!'") ;

= writes the value 3 to the address pointed to by stack entry

21

void safe () {
char buf[64];
1f (fgets(buf, 64,

return;
printf ("%s", buf);
}

stdin)

NULL)

22

It Isn't just the stack...

Computer Science 161 Spring 2020 Popa and Wagner

- Control flow attacks require that the attacker overwrite a
piece of memory that contains a pointer for future code
execution

* The return address on the stack is just the easiest target

* You can cause plenty of mayhem overwriting memory in the
heap...

* And it is made easier when targeting C++

- Allows alternate ways to hijack control flow of the program

23

Compiler Operation:
Compiling Object Oriented Code

Computer Science 161 Spring 2020

class Foo { vtable ptr (class Foo)
int i, j, k;
public virtual void bar(){ ... }
public virtual void baz(){ ... }

ptr to Foo: :bar

ptr to Foo::baz

24

A Few Exploit Techniques

Computer Science 161 Spring 2020 Popa and Wagner

- |If you can overwrite a vtable pointer...

* |t is effectively the same as overwriting the return address pointer on the stack:
When the function gets invoked the control flow is hijacked to point to the attacker’s code

The only difference is that instead of overwriting with a pointer you overwrite it with a pointer to a
table of pointers...

- Heap Overflow:

* A buffer in the heap is not checked:
Attacker writes beyond and overwrites the vtable pointer of the next object in memory

« Use-after-free:

 An object is deallocated too early:
Attacker writes new data in a newly reallocated block that overwrites the vtable pointer

* Object is then invoked

25

Magic Numbers & Exploitation...

Computer Science 161 Spring 2020

* Exploits can often be very brittle

* You see this on your Project 1: Your ./egg will not work . z

VM because the memory layout is different

- Making an exploit robust is an art unto itse 4

« EXTRABACON is an NSA exploit for Cisco ASA “Adapt
Appliances”

* |t had an exploitable stack-overflow vulnerabillity in the

« But actual exploitation required two steps:
Query for the particular version (with an SMTP read)

i

.

Select the proper set of magic numbers for that versiory %

Q

A hack that helps:
NOOP sled...

Computer Science 161 Spring 2020 Popa and Wagner

» Don't just overwrite the pointer and then provide the code
you want to execute...

- |Instead, write a large number of NOOP operations
* |nstructions that do nothing

- Now if you are a little off, it doesn't matter

* Since If you are close enough, control flow will land in the sled and start
running...

27

ETERNALBLUE

Computer Science 161 Spring 2020

Stolen by the same group ("ShadowBrokers") v
Remote exploit for Windows through SMBv1 (V

- Eventually it was very robust...

But initially it was jokingly called ETERNALBLU
crash Windows computers more reliably than e

Popa and Wagner
Plugin Category: Special

- ETERNALBLUE is another NSA exploit

Current and former officials defended the
agency’s handling of EternalBlue, saying
that the NSA must use such volatile tools to
fulfill its mission of gathering foreign
intelligence. In the case of EternalBlue, the
intelligence haul was “unreal,” said one

The NSA also made upgrades to EternalBlue
to address its penchant for crashing
targeted computers — a problem that
earned it the nickname “EternalBlueScreen”
in reference to the eerie blue screen often
displayed by computers in distress.

piugin varlia €S are vall

Prompt For Uariable Settin

Memory Safety

Computer Science 161 Spring 2020

- Memory Safety: No accesses to undefined memory

* "Undefined” is with respect to the semantics of the programming language
 Read Access: attacker can read memory that he isn't supposed to

* Write Access: attacker can write memory that she isn't supposed to

* EXxecute Access: transfer control flow to memory they aren’t supposed to

- Spatial safety: No access out of bounds

- Temporal safety: No access before or after lifetime of object

29

The CWE Top 25

Below is a brief listing of the weaknesses in the 2019 CWE Top 25, including the overall score of each.

Rank ID Name Score
[1] CWE-119 |Improper Restriction of Operations within the Bounds of a Memory Buffer 75.56
[2] CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) 45.69
(3] CWE-20 |Improper Input Validation 43.61
[4] CWE-200 |Information Exposure 32.12
[5] CWE-125 [Out-of-bounds Read 26.53
[6] CWE-89 [Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’) 24.54
[7] | CWE-416 |Use After Free 17.94
[8] CWE-190 |Integer Overflow or Wraparound 17.35
[9] CWE-352 |Cross-Site Request Forgery (CSRF) 15.54
[10] CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.10
(11] CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')| 11.47
[12] CWE-787 |Out-of-bounds Write 11.08
(13] | CWE-28/ |[Improper Authentication 10.78
[14] CWE-476 |NULL Pointer Dereference 9.74
[15] | CWE-732 |Incorrect Permission Assignment for Critical Resource 6.33
[16] | CWE-434 |Unrestricted Upload of File with Dangerous Type 5.50
[17] | CWE-611 |Improper Restriction of XML External Entity Reference 5.48
[18] CWE-94 |Improper Control of Generation of Code ('Code Injection') 5.36
[19] | CWE-798 |Use of Hard-coded Credentials 5.12

Reasoning About Safety

Computer Science 161 Spring 2020 Popa and Wagner

- How can we have confidence that our code executes in a safe (and correct,
ideally) fashion?

- Approach: build up confidence on a function-by-function / module-by-module
basis

- Modularity provides boundaries for our reasoning:

* Preconditions: what must hold for function to operate correctly
* Postconditions: what holds after function completes

- These basically describe a contract for using the module

- Notions also apply to individual statements (what must hold for correctness;
what holds after execution)

 Stmt #1’s postcondition should logically imply Stmt #2’s precondition

* Invariants: conditions that always hold at a given point in a function (this particularly matters for loops)
31

int deref (int *p) {
return *p;

}

32

/* requires: p '= NULL
(and p a valid pointer) */
int deref (int *p) {
return *p;

}

33

void *mymalloc(size t n) {
void *p = malloc(n);
if ('p) { perror('"malloc"); exit(l);
return p;

}

34

/* ensures: retval !'= NULL (and a valid pointer) */
void *mymalloc(size t n) {
void *p = malloc(n);
if ('p) { perror('"'malloc"),; exit(l), }
return p;

35

int sum(int a[], size t n) {
int total = 0O;
for (size t 1=0; i<n; 1++)
total += aj1i];
return total;

36

int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
total += ajf1i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

37

int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
total += ajf1i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access?

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

38

int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
total += ajf1i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

39

int sum(int a[], size t n) {
int total = 0;
for (size t i1=0; 1<n; 1i++)
[* 22 */
total += ajf1i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires??

(3) Propagate requirement up to beginning of function

40

int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)

/* requires: a !'= NULL &é&
0 <=1i && i < size(a) */
total += ajf1i];

return total;

Uso2

rite down precondition it requires
ropagate requirement up to beginning of function

4]

int sum(int a[], size t n) {
int total = 0;
for (size t i1=0; 1<n; 1i++)
/* requires: a != NULL &&
0 <=1i && i < size(a) */
total += ajf1i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

42

int sum(int a[], size t n) {
int total = 0;
for (size t i1=0; 1<n; 1i++)
/* requires: a != NULL &é&
0 <=1i && i < size(a) */
total += ajf1i];
return total;

Let’s simplify, given that a never changes.

43

/* requires: a !'= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i1=0; 1<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[1i];
return total;

44

/* requires: a !'= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; 1<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[1i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

45

/* requires: a !'= NULL */
int sum(int a[], size t n) { I
int total = 0O; .
for (size t 1=0; 1<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[1i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

46

/* requires: a !'= NULL */
int sum(int a[], size t n) { /
int total = 0;
for (size t 1=0; 1<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[1i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

47

/* requires: a != NULL */
int sum(int a[], size t n) { /
int total = 0;
for (size t 1=0; 1<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[1i];
return total;

The 0 <= i partis clear, so let’s focus for now on the rest.

48

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
/* requires: i < size(a) */
total += ajf1i];
return total;

49

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0; ‘?
for (size t i1=0; 1<n; 1i++)
/* requires: i < size(a) */
total += aj1i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

50

/* requires: a != NULL */
int sum(int a[], size t n) { ‘?
int total = O0;
for (size t 1=0; i<n; 1++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[1i];
return total;

G}eneral correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

51

/* requires: a != NULL */
int sum(int a[], size t n) { ‘?
int total = O0;
for (size t 1=0; i<n; 1++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[1i];
return total;

How to prove our candidate invariant?
n <= size (a) Is straightforward because n never changes.

52

/* requires: a !'= NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
/* invariant?: 1 < n && n <= size(a) */
/* requires: i < size(a) */
total += aj1i];
return total;

53

/* requires: a '= NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
/* invariant?: 1 < n && n <= size(a) */
/* requires: i < size(a) */
total += ajf1i];
return total;

What about 1 < n?

(?

54

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; 1<n; 1i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += al[1i];
return total;

What about i < n ? That follows from the loop condition.

(?

55

/* requires: a !'= NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
/* invariant: i < n && n <= size(a) */
/* requires: i < size(a) */
total += af1i];
return total;

At this point we know the proposed invariant will always hold...

56

/* requires: a !'= NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
/* invariant: 1 < n && n <= size(a) */
/* requires: i < size(a) */
total += af1i];
return total;

... and we’re donel!

57

/* requires: a !'= NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t 1=0; i<n; 1++)
/* invariant: a '= NULL &&
0 <= i && 1 < n && n <= size(a) */
total += ajf1i];
return total;

}

A more complicated loop might need us to use induction:
Base case: first entrance into loop.
Induction: show that postcondition of last statement of
loop, plus loop test condition, implies invariant.

58

int sumderef (int *a[], size t n) {
int total = 0O;
for (size t 1=0; i<n; 1++)
total += *(a[1i]);
return total;

59

/* requires: a != NULL &é&
size(a) >= n &&
P27
int sumderef (int *a[], size t n) {
int total = 0O;
for (size t 1=0; i<n; 1++)
total += *(a[1i]);
return total;

60

/* requires: a '= NULL &é&
size(a) >= n &&
for all j in 0..n-1, a[j]

!= NULL */

int sumderef (int *a[], size t n) {

int total = 0;

for (size t 1=0; i<n; 1++)
total += *(a[1i]);

return total;

This may still be memory safe
but It can still have undefined behavior!

61

char *tbl[N]; /* N > 0, has type int */

int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

62

char *tbl[N];

/* ensures: ?2?7? */
int hash (char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

63

char *tbl[N];

/* ensures: ?2?7? */
int hash (char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

64

char *tbl[N];

/* ensures: ?2?7? */
int hash (char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

65

char *tbl[N];

/* ensures: ?2?7? */
int hash (char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

66

char *tbl[N];

/* ensures: ?2?7? */
int hash (char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

67

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

68

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash (char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

69

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash (char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /* 0 <= h */
return h % N;

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

70

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash (char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /* 0 <= h */
return h $ N; /* 0 <= retval < N */
}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

71

char *tbl[N];

/* ensures: Ox:val && retval < N */

int hash (char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h_*/
h = 257*h + (*s++) + 3; /* */
return h $ N; /* 0 val < N */

}

bool search (char *s) {

int 1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

72

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
unsigned int hash (char *s) {

unsigned int h = 17; /* 0 <= h
while (*s) /* 0 <= h

h = 257*h + (*s++) + 3; /* 0 <= h
return h % N; /* 0 <= retval < N

}

bool search (char *s) {

unsigned int i1 = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

/3

Memory safe languages

Computer Science 161 Spring 2020

- Do you honestly think a human is going to go through this
process for all their code”?
 Because that is what it takes to prevent undefined memory behavior in C or C++

» Instead, use a safe language:

* Turns "undefined"” memory references into an immediate exception or program
termination

 Now you simply don't have to worry about buffer overflows and similar
vulnerabillities

» Plenty to chose from:

* Python, Java, Go, Rust, Swift, C#, ... Pretty much everything other than
C/C++/0Objective C

74

