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Lecture 3: 
Buffer Overflows
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Announcements

• Discussion today, tomorrow, Wednesday.  Go to any one 
that isn’t full.  Please respond to poll on Piazza.


• Expect Homework 1 to be released tonight.  Check Piazza.
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Security Principles
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More security principles

• Use fail-safe defaults

• Consider human factors

• Only as secure as the weakest link

• Don’t rely on security through obscurity

• Trusted path
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Time of Check to Time of Use 
Vulnerability: Race Condition
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 procedure withdraw(w) 
    // contact central server to get balance 
    1. let b := balance 
     
    2. if b < w, abort 

    // contact server to set balance 
    3. set balance := b - w 

    4. dispense $w to user

TOCTTOU = Time of Check To Time of Use

Suppose that here an attacker 
arranges to suspend first call, 
and calls withdraw again 
concurrently
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A Hundred Million Dollar  
TOCTTOU Bug...
• Ethereum is a cryptocurrency which offers "smart"  

contracts

• Program you money in a language that makes JavaScript and PHP  

look beautiful and sane


• The DAO (Distributed Autonomous Organization) was an 
attempt to make a distributed mutual fund in Ethereum


• Participants could vote on "investments" that should be made


• The DAO supported withdrawals as well
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A "Feature" In The  
Smart Contract
• To withdraw, the code was:

• Check the balance, then send the money, then decrement the balance


• But sending money in  
Ethereum can send to  
another program written  
by the recipient


• So someone "invested",  
then did a withdraw to his  
program

• Which would initiate another withdraw...
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Buffer Overflows
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#293 HRE-THR 850 1930 
ALICE SMITH 
COACH 
 
SPECIAL INSTRUX: NONE 
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#293 HRE-THR 850 1930 
ALICE SMITHHHHHHHHHHH 
HHACH 
 
SPECIAL INSTRUX: NONE 

How could Alice exploit this? 
Find a partner and talk it through.
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#293 HRE-THR 850 1930 
ALICE SMITH 
FIRST 
 
SPECIAL INSTRUX: NONE 
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char name[20];

void vulnerable() {
  ...
  gets(name);
  ...
}
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char name[20];
char instrux[80] = "none";

void vulnerable() {
  ...
  gets(name);
  ...
}
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char name[20];
int  seatinfirstclass = 0;

void vulnerable() {
  ...
  gets(name);
  ...
}
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char name[20];
int  authenticated = 0;

void vulnerable() {
  ...
  gets(name);
  ...
}



24

char line[512];
char command[] = "/usr/bin/finger";

void main() {
  ...
  gets(line);
  ...
  execv(command, ...);
}
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char name[20];
int (*fnptr)();

void vulnerable() {
  ...
  gets(name);
  ...
}
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void vulnerable() {
  char buf[64];
  ...
  gets(buf);
  ...
}
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void still_vulnerable?() {
  char *buf = malloc(64);
  ...
  gets(buf);
  ...
}
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Disclaimer: x86-32

• For this class, we are going to use 32-bit x86

• Almost everyone in this class has access to an x86 system: 

Mac, Linux, Windows...


• But these attacks do apply to other microarchitectures
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Linux (32-bit) process memory layout 
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Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment (program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

brk

Loaded from exec

-0x00000000

-0xFFFFFFFF
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The main x86 registers…

• EAX-EDX: General purpose registers

• EBP: “Frame pointer”: points to the start of the current call 

frame on the stack

• ESP: “Stack pointer”: points to the current stack


• PUSH: Decrement the stack pointer and store something there

• POP: Load something and increment the stack pointer
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x86 function calling

• Place the arguments on the stack

• CALL the function

• Which pushes the return address onto the stack (RIP == Return Instruction Pointer)


• Function saves old EBP on the stack (SFP == Saved Frame Pointer)

• Function does its stuff

• Function restores everything

• Reload EBP, pop ESP as necessary


• RET

• Which jumps to the return address that is currently pointed to by ESP

• And can optionally pop the stack a lot further…
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user stack

shared libraries

run time heap

static data 
segment

text segment 
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address

saved frame pointer

exception handlers

local variables

callee saved registers

To previous saved 
 frame pointer

To the point at which 
 this function was called
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void safe() {
  char buf[64];
  ...
  fgets(buf, 64, stdin);
  ...
}
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void safer() {
  char buf[64];
  ...
  fgets(buf, sizeof(buf), stdin);
  ...
}
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void vulnerable(int len, char *data) {
  char buf[64];
  if (len > 64)
    return;
  memcpy(buf, data, len);
}

memcpy(void *s1, const void *s2, size_t n);

Assume these are both under 
the control of an attacker.

size_t is unsigned: 
What happens if len == -1?
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void safe(size_t len, char *data) {
  char buf[64];
  if (len > 64)
    return;
  memcpy(buf, data, len);
}
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void f(size_t len, char *data) {
  char *buf = malloc(len+2);
  if (buf == NULL) return;
  memcpy(buf, data, len);
  buf[len] = '\n';
  buf[len+1] = '\0';
}

Vulnerable! 
If len = 0xffffffff, allocates only 1 byte

Is it safe?  Talk to your partner.
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void vulnerable() {
  char buf[64];
  if (fgets(buf, 64, stdin) == NULL)
    return;
  printf(buf);
}
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printf("you scored %d\n", score);  
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r i p
s f p

s f p

p r i n t f ( )

0x8048464

0x8048464
score

p r i n t f (“you scored %d\ n ”,  s c o r e ) ;

o yu
c sor

d e%

\ n d\ 0
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printf("a %s costs $%d\n", item, price); 
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r i p
s f p

s f p

p r i n t f ( )

0x8048464

0x8048464
i tem

p r i n t f (" a  %s c o s t s  $%d\ n ",  i t e m ,  p r i c e ) ;

a%s

cos

s t$

d %\ n\ 0

p r i c e
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Fun With printf format strings...
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printf("100% dude!");
 

Format argument is missing!
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r i p
s f p

s f p

p r i n t f ( )

0x8048464

0x8048464

p r i n t f (“100% dude!”) ;

0 10%
dud

! e\ 0

???
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More Fun With printf format strings...
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printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer 
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
      up through first NUL 

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers 
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
                 pointed to by preceding stack entry 
printf("100% nuke’m!");

What does the %n format do??
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int report_cost(int item_num, int price) { 
  int colon_offset;
  printf("item %d:%n $%d\n", item_num, 
                 &colon_offset, price); 
  return colon_offset;
}

report_cost(3, 22) prints "item 3: $22" 
 and returns the value 7

report_cost(987, 5) prints "item 987: $5" 
 and returns the value 9

%n writes the number of characters printed so far 
into the corresponding format argument.
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Fun With printf format strings...
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printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer 
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
      up through first NUL 

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers 
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
                 pointed to by preceding stack entry 
printf("100% nuke’m!");
 ⇒ writes the value 3 to the address pointed to by stack entry
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void safe() {
  char buf[64];
  if (fgets(buf, 64, stdin) == NULL)
    return;
  printf("%s", buf);
}


