Lecture 3:
Buffer Overflows

https://cs161.org

Announcements

. Dlscussmn today, tomorrow, Wednesday. Go to any one
that isn’t full. Please respond to poll on Piazza.

- Expect Homework 1 to be released tonight. Check Piazza.

Security Principles

More security principles

Use fall-safe defaults

- Consider human factors

- Only as secure as the weakest link

- Don’t rely on security through obscurity
- [rusted path

|-

4

\

I
e J

N
2

-

S g

..~ — -

e s o ve s »
e I N SRE—
e L . T —
ehms bPemus o o — — -,

\..l".‘~’ " Par—

'.---'.--

Time of Check to Time of Use
Vulnerability: Race Condition

Computer Science 161 Spring 2020

procedure withdraw(w)
// contact central server to get balance
1. let b := balance

2. 1f b <w, abort

// contact server to set balance
3. set balance :=b -w

4. dispense $w to user

TOCTTOU = Time of Check To Time of Use

A Hundred Million Dollar
TOCTTOU Buag...

Computer Science 1 61 Spring 2020

- Ethereum is a cryptocurrency which offers "smart’
contracts
* Program you money in a language that makes JavaScript and PHP

look beautiful and sane v

- The DAO (Distributed Autonomous Organization) was an
attempt to make a distributed mutual fund in Ethereum
* Participants could vote on "investments” that should be made

- The DAQO supported withdrawals as well

A "Feature” In The
Smart Contract

Computer Science 161 Spring 2020

- To withdraw, the code was:
 (Check the balance, then send the money, then decrement the balance

- But sending money In
Ethereum can send to .
another program written ANNNND

by the recipient

« S0 someone "invested"”, ,,

Pl
4+

then did a withdraw to his e
program = ’

IT°S.GONE

-
R
Vi

 Which would initiate another withdraw...

Computer Science 161 Spring 2020 Popa and Wagner

Buffer Overflows

N

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name: ‘
" Dr. +]Alice Smith
Gender: Date of Birth: Travelers are required to enter a middle name/Initial If one Is

- listed on thelr government-issued photo ID.
[Female t-éa 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): 2]

Seat Request:
® No Preference () Aisle () Window

|3

4

15

Ol ity R v i . > b

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:

' Dr. +]Alice Smithhhhhhhhhhhhh
ey Travelers are required to enter a middle name/Initial If one Is

Gender: Date of Birth: listed on thelr government-issued photo 1D.

[Female Hﬂ 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): 2]

Seat Request:
No Preference () Aisle () Window

16

How could Alice exploit this?

Find a partner and talk it through.

17

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name: |
" Dr. 4] Alice Smith First
Gender: Date of Birth: Travelers are required to enter a middle name/Initial If one Is

- listed on thelr government-issued photo ID.
_Female %] 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): 2]

Seat Request:
A N Drafaranca) Aicle £ Windaw

|18

19

Ol ity R v i . > b

char name[20];

void wvulnerable () {

gets (name) ;

20

char name[20];
char instrux[80] =

void wvulnerable () {

gets (name) ;

"none" ;

21

char name[20];
int seatinfirstclass

void wvulnerable () {

gets (name) ;

0;

22

char name[20];

int authenticated = 0;

void wvulnerable () {

gets (name) ;

23

char line[512];
char command|[] =

volid main () {

gets(line) ;

execv (command,

}

"/usr/bin/finger";

)

24

char name[20];
int (*fnptr) ();

void wvulnerable () {

gets (name) ;

25

The CWE Top 25

Below is a brief listing of the weaknesses in the 2019 CWE Top 25, including the overall score of each.

Rank ID Name Score
[1] CWE-119 |Improper Restriction of Operations within the Bounds of a Memory Buffer 75.56
(2] CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) 45.69
[3] CWE-20 |Improper Input Validation 43.61
(4] CWE-200 |Information Exposure 32.12
[5] CWE-125 |Out-of-bounds Read 26.53
[6] CWE-89 |[Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 24.54
[7] CWE-416 |Use After Free 17.94
[8] CWE-190 [Integer Overflow or Wraparound 17.35
[9] WE-352 |Cross-Site Request Forgery (CSRF) 15.54
[10] CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.10
[11] CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')| 11.47
[12] | CWE-787 |Out-of-bounds Write 11.08
[13] | CWE-287 |Improper Authentication 10.78
[14] | CWE-476 [NULL Pointer Dereference 9.74
[15] | CWE-732 |Incorrect Permission Assignment for Critical Resource 6.33
[16] | CWE-434 |Unrestricted Upload of File with Dangerous Type 5.50
[17] | CWE-611 |Improper Restriction of XML External Entity Reference 5.48
[18] CWE-94 |Improper Control of Generation of Code ('Code Injection') 5.36
[19] | CWE-798 |Use of Hard-coded Credentials 5.12

void wvulnerable () {
char buf[64];

gets (buf) ;

27

void still vulnerable? () {
char *buf = malloc(64) ;

gets (buf) ;

28

IE's Role in the Google-China War

By Richard Adhikari
TechNewsWorld
01/15/10 12:25 PM PT

The hack attack on Google that set off the company’s
ongoing standoff with China appears to have come
through a zero-day flaw in Microsoft's Internet Explorer
browser. Microsoft has released a security advisory, and
researchers are hard at work studying the exploit. The attack appears to consist
of several files, each a different piece of malware.

Computer security companies are scurrying to cope with the fallout from the Internet
Explorer (IE) flaw that led to cyberattacks on Google (Nasdaq: GOOG) and its corporate
and individual customers.

The zero-day attack that exploited IE is part of a lethal cocktail of malware that is keeping
researchers very busy.

"We're discovering things on an up-to-the-minute basis, and we've seen about a dozen

files dropped on infected PCs so far," Dmitri Alperovitch, vice president of research at
McAfee Labs, told TechNewsWorld.

The attacks on Google, which appeared to originate in China, have sparked a feud
between the Internet giant and the nation's government over censorship, and it could
result in Google pulling away from its business dealings in the country.

Pointing to the Flaw

he vulnerability in IE is an invalid pointer reference, Microsoft (Nasdaq: MSFT) said In
security advisory 979352, which it issued on Thursday. Under certain conditions, the

Invalid pointer can be accessed after an object is deleted, the advisory states. In
crafted attac s g e TStomers

!

can allow

r

remote execution of code when the flaw is exploited.

29

Disclaimer: x86-32

Computer Science 161 Spring 2020

* For this class, we are going to use 32-bit x86

* Almost everyone In this class has access to an x86 system:
Mac, Linux, Windows...

- But these attacks do apply to other microarchitectures

30

Linux (32-bit) process memory layout

Computer Science 161 Spring 2020 Popa and Wagner

Reserved for Kernel

user stack

OXFEFFFFEFFFE

0xC0000000

0x40000000

static data segment

Loaded from exec text segment (program)

0x08048000
0x00000000 31

The main x86 registers...

Computer Science 161 Spring 2020

- EAX-EDX: General purpose registers

- EBP: "Frame pointer”: points to the start of the current call
frame on the stack

- ESP: “Stack pointer”: points to the current stack

PUSH: Decrement the stack pointer and store something there
POP: Load something and increment the stack pointer

32

Xx86 function calling

Computer Science 161 Spring 2020 Popa and Wagner

- Place the arguments on the stack
- CALL the function

 Which pushes the return address onto the stack (RIP == Return Instruction Pointer)

* Function saves old EBP on the stack (SFP == Saved Frame Pointer)

* Function does Its stuff

* Function restores everything
 Reload EBP, pop ESP as necessary

- RET

* Which jumps to the return address that is currently pointed to by ESP

* And can optionally pop the stack a lot further...
33

0xC0000000 <%___]

To previous saved
frame pointer

arguments

return address

saved frame pointer

exception handlers

To the point at which

Jxa0bbonoo local variables this function was called
callee saved registers
static data
segment
text segment
(program)
0x08048000

0x00000000

void safe () {
char buf[64];

fgets (buf, 64, stdin);

35

void safer () {
char buf[64];

fgets (buf, sizeof (buf), stdin);

36

char buf[64];
if (len > 64)
return;
memcpy (buf, data, len);

}

void vulnerable (ant len, char *data) {

memcpy (void *sl, const void *s2,

37

void safe(size t len, char *data) {
char buf[64];
1f (len > 64)

return;
memcpy (buf, data, 1len);

}

38

void f(size t len, char *data) {
char *buf = malloc(len+2) ;
1f (buf == NULL) return;

memcpy (buf, data, len);
buf[len] = '\n’';
buf[len+l] = '\0';

}

Is it safe”? Talk to your partner.

39

Broward Vote-Counting Blunder Changes Amendment Result

POSTED: 1:34 pm EST November 4, 2004

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, it turns out the
amendment passed.

Tsoltware 18 not geared to count more than 32,000 votes 1n a
precinct. So what happens when it gets to 32,000 is the software starts | , :
sQunting backward,” said Broward County Mayor Ilene Lieberman, Broward County Mayor

".0.

Ilene Lieberman says
voting counting error 1$ an
"embarrassing mistake."

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, 1t’s clear amendment 4 passed.

void wvulnerable () {
char buf[64];
if (fgets(buf, 64,

retirni

}

stdin)

NULL)

41

printf ("you scored %d\n", score);

42

printf(“you scored %\n”, score);

printf()

score

0x8048464

rip

\0(\n| d

% d e

0x8048464

43

printf ("a %s costs $%d\n", item, price);

44

printf("a % costs $%\n", item, price);|

>

>

>

printf()

price

item

0x8048464

rip

\O(\n| d | %

$ s | t
s | o | ¢
s | % a

0x8048464

45

Fun With print£f format strings...

Computer Science 1 61 Spring 2020

printf ("10 C_

46

printf(“100% dude!”) ;

printf()

sfp

???

0x8048464

rip
sfp

%0 (0 (1

0x8048464

47

More Fun With print£f format strings...

Computer Science 161 Spring 2020

printf ("100% dude!");

= prints value 4 bytes above retaddr as integer
printf ("100% sir!'");

= prints bytes pointed to by that stack entry

up through first NUL
printf("sd 3sd 3sd sd ...");

= prints series of stack entries as integers
printf ("3sd 3s");

=> prints value 4 bytes above retaddr plus bytes

pointed to by preceding stack entry
printf ("100% nuke’'m!") ;

%n writes the number of characters printed so far
into the corresponding format argument.

int report cost(int item num, int price)
int colon offset;
printf("item %d:%n $%d\n", item num,
&colon offset, price);
return colon offset;

}

report cost (3, 22) prints "item 3: $22"
and returns the value 7

report cost (987, 5) prints "item 987: $5"
and returns the value 9

{

49

Fun With print£f format strings...

Computer Science 161 Spring 2020

printf ("100% dude!");

= prints value 4 bytes above retaddr as integer
printf ("100% sir!");

= prints bytes pointed to by that stack entry

up through first NUL
printf("3d sd 3d 3sd ...");

= prints series of stack entries as integers
printf ("3sd 3s");

=> prints value 4 bytes above retaddr plus bytes

pointed to by preceding stack entry
printf ("100% nuke'm!'") ;

= writes the value 3 to the address pointed to by stack entry

50

void safe () {
char buf[64];
1f (fgets(buf, 64,

return;
printf ("%s", buf);
}

stdin)

NULL)

51

