
Computer Science 161 Spring 2020 Popa and Wagner

Lecture 3: 
Buffer Overflows

1https://cs161.org

Computer Science 161 Spring 2020 Popa and Wagner

Announcements

• Discussion today, tomorrow, Wednesday. Go to any one
that isn’t full. Please respond to poll on Piazza.

• Expect Homework 1 to be released tonight. Check Piazza.

2

Computer Science 161 Spring 2020 Popa and Wagner

Security Principles

3

Computer Science 161 Spring 2020 Popa and Wagner

More security principles

• Use fail-safe defaults

• Consider human factors

• Only as secure as the weakest link

• Don’t rely on security through obscurity

• Trusted path

4

5

6

7

Computer Science 161 Spring 2020 Popa and Wagner

Time of Check to Time of Use 
Vulnerability: Race Condition

8

 procedure withdraw(w)
 // contact central server to get balance
 1. let b := balance

 2. if b < w, abort

 // contact server to set balance
 3. set balance := b - w

 4. dispense $w to user

TOCTTOU = Time of Check To Time of Use

Suppose that here an attacker
arranges to suspend first call,
and calls withdraw again
concurrently

Computer Science 161 Spring 2020 Popa and Wagner

A Hundred Million Dollar  
TOCTTOU Bug...
• Ethereum is a cryptocurrency which offers "smart"  

contracts

• Program you money in a language that makes JavaScript and PHP  

look beautiful and sane

• The DAO (Distributed Autonomous Organization) was an
attempt to make a distributed mutual fund in Ethereum

• Participants could vote on "investments" that should be made

• The DAO supported withdrawals as well

9

Computer Science 161 Spring 2020 Popa and Wagner

A "Feature" In The  
Smart Contract
• To withdraw, the code was:

• Check the balance, then send the money, then decrement the balance

• But sending money in  
Ethereum can send to  
another program written  
by the recipient

• So someone "invested",  
then did a withdraw to his  
program

• Which would initiate another withdraw...

10

Computer Science 161 Spring 2020 Popa and Wagner

Buffer Overflows

11

12

13

14

15

#293 HRE-THR 850 1930
ALICE SMITH
COACH

SPECIAL INSTRUX: NONE

16

17

#293 HRE-THR 850 1930
ALICE SMITHHHHHHHHHHH
HHACH

SPECIAL INSTRUX: NONE

How could Alice exploit this?
Find a partner and talk it through.

18

19

#293 HRE-THR 850 1930
ALICE SMITH
FIRST

SPECIAL INSTRUX: NONE

20

char name[20];

void vulnerable() {
 ...
 gets(name);
 ...
}

21

char name[20];
char instrux[80] = "none";

void vulnerable() {
 ...
 gets(name);
 ...
}

22

char name[20];
int seatinfirstclass = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

23

char name[20];
int authenticated = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

24

char line[512];
char command[] = "/usr/bin/finger";

void main() {
 ...
 gets(line);
 ...
 execv(command, ...);
}

25

char name[20];
int (*fnptr)();

void vulnerable() {
 ...
 gets(name);
 ...
}

26

27

void vulnerable() {
 char buf[64];
 ...
 gets(buf);
 ...
}

28

void still_vulnerable?() {
 char *buf = malloc(64);
 ...
 gets(buf);
 ...
}

29

Computer Science 161 Spring 2020 Popa and Wagner

Disclaimer: x86-32

• For this class, we are going to use 32-bit x86

• Almost everyone in this class has access to an x86 system: 

Mac, Linux, Windows...

• But these attacks do apply to other microarchitectures

30

Computer Science 161 Spring 2020 Popa and Wagner

Linux (32-bit) process memory layout

31

Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment (program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

brk

Loaded from exec

-0x00000000

-0xFFFFFFFF

Computer Science 161 Spring 2020 Popa and Wagner

The main x86 registers…

• EAX-EDX: General purpose registers

• EBP: “Frame pointer”: points to the start of the current call

frame on the stack

• ESP: “Stack pointer”: points to the current stack

• PUSH: Decrement the stack pointer and store something there

• POP: Load something and increment the stack pointer

32

Computer Science 161 Spring 2020 Popa and Wagner

x86 function calling

• Place the arguments on the stack

• CALL the function

• Which pushes the return address onto the stack (RIP == Return Instruction Pointer)

• Function saves old EBP on the stack (SFP == Saved Frame Pointer)

• Function does its stuff

• Function restores everything

• Reload EBP, pop ESP as necessary

• RET

• Which jumps to the return address that is currently pointed to by ESP

• And can optionally pop the stack a lot further…

33

34

user stack

shared libraries

run time heap

static data
segment

text segment
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address

saved frame pointer

exception handlers

local variables

callee saved registers

To previous saved
 frame pointer

To the point at which
 this function was called

35

void safe() {
 char buf[64];
 ...
 fgets(buf, 64, stdin);
 ...
}

36

void safer() {
 char buf[64];
 ...
 fgets(buf, sizeof(buf), stdin);
 ...
}

37

void vulnerable(int len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

memcpy(void *s1, const void *s2, size_t n);

Assume these are both under
the control of an attacker.

size_t is unsigned: 
What happens if len == -1?

38

void safe(size_t len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

39

void f(size_t len, char *data) {
 char *buf = malloc(len+2);
 if (buf == NULL) return;
 memcpy(buf, data, len);
 buf[len] = '\n';
 buf[len+1] = '\0';
}

Vulnerable! 
If len = 0xffffffff, allocates only 1 byte

Is it safe? Talk to your partner.

40

41

void vulnerable() {
 char buf[64];
 if (fgets(buf, 64, stdin) == NULL)
 return;
 printf(buf);
}

42

printf("you scored %d\n", score);

43

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464
score

p r i n t f (“you scored %d\ n ”, s c o r e) ;

o yu
c sor

d e%

\ n d\ 0

44

printf("a %s costs $%d\n", item, price);

45

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464
i tem

p r i n t f (" a %s c o s t s $%d\ n ", i t e m , p r i c e) ;

a%s

cos

s t$

d %\ n\ 0

p r i c e

Computer Science 161 Spring 2020 Popa and Wagner

Fun With printf format strings...

46

printf("100% dude!");

Format argument is missing!

47

r i p
s f p

s f p

p r i n t f ()

0x8048464

0x8048464

p r i n t f (“100% dude!”) ;

0 10%
dud

! e\ 0

???

Computer Science 161 Spring 2020 Popa and Wagner

More Fun With printf format strings...

48

printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
 up through first NUL

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
 pointed to by preceding stack entry
printf("100% nuke’m!");

What does the %n format do??

49

int report_cost(int item_num, int price) {
 int colon_offset;
 printf("item %d:%n $%d\n", item_num,
 &colon_offset, price);
 return colon_offset;
}

report_cost(3, 22) prints "item 3: $22"
 and returns the value 7

report_cost(987, 5) prints "item 987: $5"
 and returns the value 9

%n writes the number of characters printed so far
into the corresponding format argument.

Computer Science 161 Spring 2020 Popa and Wagner

Fun With printf format strings...

50

printf("100% dude!");
 ⇒ prints value 4 bytes above retaddr as integer
printf("100% sir!");

⇒ prints bytes pointed to by that stack entry 
 up through first NUL

printf("%d %d %d %d ...");
 ⇒ prints series of stack entries as integers
printf("%d %s");
 ⇒ prints value 4 bytes above retaddr plus bytes
 pointed to by preceding stack entry
printf("100% nuke’m!");
 ⇒ writes the value 3 to the address pointed to by stack entry

51

void safe() {
 char buf[64];
 if (fgets(buf, 64, stdin) == NULL)
 return;
 printf("%s", buf);
}

